Documentation

StrongPNT.ZetaZeroFree

theorem ZetaNoZerosInBox' (T : ) :
∃ (σ : ) (_ : σ < 1), ∀ (t : ), |t| Tσ'σ, riemannZeta (σ' + t * Complex.I) 0
theorem LogDerivZetaHoloOn' {S : Set } (s_ne_one : 1S) (nonzero : sS, riemannZeta s 0) :
theorem LogDerivZetaHolcSmallT' :
∃ (σ₂ : ) (_ : σ₂ < 1), HolomorphicOn (fun (s : ) => deriv riemannZeta s / riemannZeta s) (Set.uIcc σ₂ 2 ×ℂ Set.uIcc (-3) 3 \ {1})
theorem LogDerivZetaHolcLargeT' :
∃ (A : ) (_ : A Set.Ioc 0 (1 / 2)), ∀ (T : ), 3 THolomorphicOn (fun (s : ) => deriv riemannZeta s / riemannZeta s) (Set.Icc (1 - A / Real.log T ^ 1) 2 ×ℂ Set.Icc (-T) T \ {1})