Equations
- riemannzeta' = Lean.ParserDescr.node `riemannzeta' 1024 (Lean.ParserDescr.symbol "ζ")
Instances For
Equations
- derivriemannzeta' = Lean.ParserDescr.node `derivriemannzeta' 1024 (Lean.ParserDescr.symbol "ζ'")
Instances For
theorem
LogDerivZetaHoloOn'
{S : Set ℂ}
(s_ne_one : 1 ∉ S)
(nonzero : ∀ s ∈ S, riemannZeta s ≠ 0)
:
HolomorphicOn (fun (s : ℂ) => deriv riemannZeta s / riemannZeta s) S
theorem
LogDerivZetaHolcSmallT' :
∃ (σ₂ : ℝ) (_ : σ₂ < 1),
HolomorphicOn (fun (s : ℂ) => deriv riemannZeta s / riemannZeta s) (Set.uIcc σ₂ 2 ×ℂ Set.uIcc (-3) 3 \ {1})