Documentation

PrimeNumberTheoremAnd.Fourier

Equations
Instances For
    @[simp]
    @[simp]
    noncomputable def e (u : ) :
    Equations
    Instances For
      @[simp]
      theorem e_apply (u v : ) :
      (e u) v = (Real.fourierChar (-v * u))
      theorem hasDerivAt_e {u x : } :
      HasDerivAt (⇑(e u)) (-2 * Real.pi * u * Complex.I * (e u) x) x
      @[simp]
      theorem F_neg {f : } {u : } :
      @[simp]
      theorem F_mul {f : } {c : } {u : } :
      Real.fourierIntegral (fun (x : ) => c * f x) u = c * Real.fourierIntegral f u
      theorem fourierIntegral_self_add_deriv_deriv (f : W21) (u : ) :
      (1 + u ^ 2) * Real.fourierIntegral f.toFun u = Real.fourierIntegral (fun (u : ) => f.toFun u - 1 / (4 * Real.pi ^ 2) * deriv^[2] f.toFun u) u
      @[simp]
      theorem deriv_ofReal :
      deriv Complex.ofReal = fun (x : ) => 1