- toFun : ℝ → E
- h2 : HasCompactSupport self.toFun
Instances For
theorem
CS.ext_iff
{n : ℕ}
{E : Type u_2}
{inst✝ : NormedAddCommGroup E}
{inst✝¹ : NormedSpace ℝ E}
{x y : CS n E}
:
- toFun : ℝ → E
- integrable ⦃k : ℕ⦄ : k ≤ n → MeasureTheory.Integrable (iteratedDeriv k self.toFun) MeasureTheory.volume
Instances For
theorem
tendsto_funscale
{E : Type u_1}
[NormedAddCommGroup E]
{f : ℝ → E}
(hf : ContinuousAt f 0)
(x : ℝ)
:
Filter.Tendsto (fun (R : ℝ) => funscale f R x) Filter.atTop (nhds (f 0))
Equations
- CS.instCoeFunForallReal = { coe := CS.toFun }
Equations
- CS.instNeg = { neg := CS.neg }
@[simp]
theorem
CS.neg_apply
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
{f : CS n E}
{x : ℝ}
:
Equations
- CS.instHSMulReal = { hSMul := CS.smul }
@[simp]
theorem
CS.smul_apply
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
{f : CS n E}
{R x : ℝ}
:
theorem
CS.continuous
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
(f : CS n E)
:
theorem
CS.hasDerivAt
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
(f : CS (n + 1) E)
(x : ℝ)
:
HasDerivAt f.toFun (f.deriv.toFun x) x
theorem
CS.deriv_apply
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
{f : CS (n + 1) E}
{x : ℝ}
:
theorem
CS.deriv_smul
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
{R : ℝ}
{f : CS (n + 1) E}
:
theorem
CS.hasDerivAt_scale
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
(f : CS (n + 1) E)
(R x : ℝ)
:
HasDerivAt (f.scale R).toFun (R⁻¹ • _root_.deriv f.toFun (R⁻¹ • x)) x
theorem
CS.tendsto_scale
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
(f : CS n E)
(x : ℝ)
:
Filter.Tendsto (fun (R : ℝ) => (f.scale R).toFun x) Filter.atTop (nhds (f.toFun 0))
Equations
- trunc.instCoeCSOfNatNatReal = { coe := trunc.toCS }
Equations
- W1.instCoeFunForallReal = { coe := W1.toFun }
theorem
W1.continuous
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
(f : W1 n E)
:
theorem
W1.differentiable
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
(f : W1 (n + 1) E)
:
theorem
W1.iteratedDeriv_sub
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
{f g : ℝ → E}
(hf : ContDiff ℝ (↑n) f)
(hg : ContDiff ℝ (↑n) g)
:
theorem
W1.hasDerivAt
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{n : ℕ}
(f : W1 (n + 1) E)
(x : ℝ)
:
HasDerivAt f.toFun (f.deriv.toFun x) x
Equations
- W1.instSub = { sub := W1.sub }
Equations
- W1.of_Schwartz f = { toFun := ⇑f, smooth := ⋯, integrable := ⋯ }
Instances For
Equations
theorem
W21_approximation
(f : W21)
(g : trunc)
:
Filter.Tendsto (fun (R : ℝ) => ‖f - W21.ofCS2 (g.scale R * f)‖) Filter.atTop (nhds 0)