Documentation

PrimeNumberTheoremAnd.ResidueCalcOnRectangles

noncomputable def HIntegral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (x₁ x₂ y : ) :
E
Equations
Instances For
    noncomputable def VIntegral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (x y₁ y₂ : ) :
    E
    Equations
    Instances For
      noncomputable def HIntegral' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (x₁ x₂ y : ) :
      E
      Equations
      Instances For
        noncomputable def VIntegral' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (x y₁ y₂ : ) :
        E
        Equations
        Instances For
          theorem HIntegral_symm {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x₁ x₂ y : } :
          HIntegral f x₁ x₂ y = -HIntegral f x₂ x₁ y
          theorem VIntegral_symm {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x y₁ y₂ : } :
          VIntegral f x y₁ y₂ = -VIntegral f x y₂ y₁
          noncomputable def RectangleIntegral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (z w : ) :
          E

          A RectangleIntegral of a function f is one over a rectangle determined by z and w in .

          Equations
          Instances For
            @[reducible, inline]
            noncomputable abbrev RectangleIntegral' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (z w : ) :
            E

            A RectangleIntegral' of a function f is one over a rectangle determined by z and w in , divided by 2 * π * I.

            Equations
            Instances For
              noncomputable def UpperUIntegral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (σ σ' T : ) :
              E
              Equations
              Instances For
                noncomputable def LowerUIntegral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (σ σ' T : ) :
                E
                Equations
                Instances For
                  noncomputable def VerticalIntegral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (σ : ) :
                  E
                  Equations
                  Instances For
                    @[reducible, inline]
                    noncomputable abbrev VerticalIntegral' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (σ : ) :
                    E
                    Equations
                    Instances For
                      theorem verticalIntegral_split_three {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {σ : } (a b : ) (hf : MeasureTheory.Integrable (fun (t : ) => f (σ + t * Complex.I)) MeasureTheory.volume) :
                      VerticalIntegral f σ = (Complex.I (t : ) in Set.Iic a, f (σ + t * Complex.I)) + VIntegral f σ a b + Complex.I (t : ) in Set.Ici b, f (σ + t * Complex.I)
                      theorem DiffVertRect_eq_UpperLowerUs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {σ σ' T : } (f_int_σ : MeasureTheory.Integrable (fun (t : ) => f (σ + t * Complex.I)) MeasureTheory.volume) (f_int_σ' : MeasureTheory.Integrable (fun (t : ) => f (σ' + t * Complex.I)) MeasureTheory.volume) :
                      VerticalIntegral f σ' - VerticalIntegral f σ - RectangleIntegral f (σ - Complex.I * T) (σ' + Complex.I * T) = UpperUIntegral f σ σ' T - LowerUIntegral f σ σ' T
                      @[reducible, inline]
                      abbrev HolomorphicOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (s : Set ) :

                      A function is HolomorphicOn a set if it is complex differentiable on that set.

                      Equations
                      Instances For
                        theorem existsDifferentiableOn_of_bddAbove {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} [CompleteSpace E] {s : Set } {c : } (hc : s nhds c) (hd : HolomorphicOn f (s \ {c})) (hb : BddAbove (norm f '' (s \ {c}))) :
                        ∃ (g : E), HolomorphicOn g s Set.EqOn f g (s \ {c})
                        theorem HolomorphicOn.vanishesOnRectangle {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {z w : } [CompleteSpace E] {U : Set } (f_holo : HolomorphicOn f U) (hU : z.Rectangle w U) :
                        theorem RectangleIntegral_congr {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f g : E} {z w : } (h : Set.EqOn f g (RectangleBorder z w)) :
                        theorem RectangleIntegral'_congr {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f g : E} {z w : } (h : Set.EqOn f g (RectangleBorder z w)) :
                        theorem rectangleIntegral_symm_re {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (z w : ) :
                        RectangleIntegral f (w.re + z.im * Complex.I) (z.re + w.im * Complex.I) = -RectangleIntegral f z w
                        def RectangleBorderIntegrable {E : Type u_1} [NormedAddCommGroup E] (f : E) (z w : ) :
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem ContinuousOn.rectangleBorderNoPIntegrable {E : Type u_1} [NormedAddCommGroup E] {f : E} {z w p : } (hf : ContinuousOn f (z.Rectangle w \ {p})) (pNotOnBorder : pRectangleBorder z w) :
                          theorem RectangleIntegralHSplit {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {a x₀ x₁ y₀ y₁ : } (f_int_x₀_a_bot : IntervalIntegrable (fun (x : ) => f (x + y₀ * Complex.I)) MeasureTheory.volume x₀ a) (f_int_a_x₁_bot : IntervalIntegrable (fun (x : ) => f (x + y₀ * Complex.I)) MeasureTheory.volume a x₁) (f_int_x₀_a_top : IntervalIntegrable (fun (x : ) => f (x + y₁ * Complex.I)) MeasureTheory.volume x₀ a) (f_int_a_x₁_top : IntervalIntegrable (fun (x : ) => f (x + y₁ * Complex.I)) MeasureTheory.volume a x₁) :
                          RectangleIntegral f (x₀ + y₀ * Complex.I) (x₁ + y₁ * Complex.I) = RectangleIntegral f (x₀ + y₀ * Complex.I) (a + y₁ * Complex.I) + RectangleIntegral f (a + y₀ * Complex.I) (x₁ + y₁ * Complex.I)

                          Given x₀ a x₁ : ℝ, and y₀ y₁ : ℝ and a function f : ℂ → ℂ so that both (t : ℝ) ↦ f(t + y₀ * I) and (t : ℝ) ↦ f(t + y₁ * I) are integrable over both t ∈ Icc x₀ a and t ∈ Icc a x₁, we have that RectangleIntegral f (x₀ + y₀ * I) (x₁ + y₁ * I) is the sum of RectangleIntegral f (x₀ + y₀ * I) (a + y₁ * I) and RectangleIntegral f (a + y₀ * I) (x₁ + y₁ * I).

                          theorem RectangleIntegralHSplit' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {a x₀ x₁ y₀ y₁ : } (ha : a Set.uIcc x₀ x₁) (hf : RectangleBorderIntegrable f (x₀ + y₀ * Complex.I) (x₁ + y₁ * Complex.I)) :
                          RectangleIntegral f (x₀ + y₀ * Complex.I) (x₁ + y₁ * Complex.I) = RectangleIntegral f (x₀ + y₀ * Complex.I) (a + y₁ * Complex.I) + RectangleIntegral f (a + y₀ * Complex.I) (x₁ + y₁ * Complex.I)
                          theorem RectangleIntegralVSplit {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {b x₀ x₁ y₀ y₁ : } (f_int_y₀_b_left : IntervalIntegrable (fun (y : ) => f (x₀ + y * Complex.I)) MeasureTheory.volume y₀ b) (f_int_b_y₁_left : IntervalIntegrable (fun (y : ) => f (x₀ + y * Complex.I)) MeasureTheory.volume b y₁) (f_int_y₀_b_right : IntervalIntegrable (fun (y : ) => f (x₁ + y * Complex.I)) MeasureTheory.volume y₀ b) (f_int_b_y₁_right : IntervalIntegrable (fun (y : ) => f (x₁ + y * Complex.I)) MeasureTheory.volume b y₁) :
                          RectangleIntegral f (x₀ + y₀ * Complex.I) (x₁ + y₁ * Complex.I) = RectangleIntegral f (x₀ + y₀ * Complex.I) (x₁ + b * Complex.I) + RectangleIntegral f (x₀ + b * Complex.I) (x₁ + y₁ * Complex.I)
                          theorem RectangleIntegralVSplit' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {b x₀ x₁ y₀ y₁ : } (hb : b Set.uIcc y₀ y₁) (hf : RectangleBorderIntegrable f (x₀ + y₀ * Complex.I) (x₁ + y₁ * Complex.I)) :
                          RectangleIntegral f (x₀ + y₀ * Complex.I) (x₁ + y₁ * Complex.I) = RectangleIntegral f (x₀ + y₀ * Complex.I) (x₁ + b * Complex.I) + RectangleIntegral f (x₀ + b * Complex.I) (x₁ + y₁ * Complex.I)
                          theorem RectanglePullToNhdOfPole' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} [CompleteSpace E] {z₀ z₁ z₂ z₃ p : } (h_orientation : z₀.re z₃.re z₀.im z₃.im z₁.re z₂.re z₁.im z₂.im) (hp : z₁.Rectangle z₂ nhds p) (hz : z₁.Rectangle z₂ z₀.Rectangle z₃) (fHolo : HolomorphicOn f (z₀.Rectangle z₃ \ {p})) :
                          RectangleIntegral f z₀ z₃ = RectangleIntegral f z₁ z₂
                          theorem RectanglePullToNhdOfPole {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} [CompleteSpace E] {z w p : } (zRe_lt_wRe : z.re w.re) (zIm_lt_wIm : z.im w.im) (hp : z.Rectangle w nhds p) (fHolo : HolomorphicOn f (z.Rectangle w \ {p})) :
                          ∀ᶠ (c : ) in nhdsWithin 0 (Set.Ioi 0), RectangleIntegral f z w = RectangleIntegral f (-c - Complex.I * c + p) (c + Complex.I * c + p)

                          Given f holomorphic on a rectangle z and w except at a point p, the integral of f over the rectangle with corners z and w is the same as the integral of f over a small square centered at p.

                          theorem RectanglePullToNhdOfPole'' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} [CompleteSpace E] {z w p : } (zRe_le_wRe : z.re w.re) (zIm_le_wIm : z.im w.im) (pInRectInterior : z.Rectangle w nhds p) (fHolo : HolomorphicOn f (z.Rectangle w \ {p})) :
                          ∀ᶠ (c : ) in nhdsWithin 0 (Set.Ioi 0), RectangleIntegral' f z w = RectangleIntegral' f (-c - Complex.I * c + p) (c + Complex.I * c + p)
                          theorem RectangleIntegral.const_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (z w c : ) :
                          RectangleIntegral (fun (s : ) => c f s) z w = c RectangleIntegral f z w
                          theorem RectangleIntegral.const_mul' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (z w c : ) :
                          RectangleIntegral' (fun (s : ) => c f s) z w = c RectangleIntegral' f z w
                          theorem RectangleIntegral.translate {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (z w p : ) :
                          RectangleIntegral (fun (s : ) => f (s - p)) z w = RectangleIntegral f (z - p) (w - p)
                          theorem RectangleIntegral.translate' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (z w p : ) :
                          RectangleIntegral' (fun (s : ) => f (s - p)) z w = RectangleIntegral' f (z - p) (w - p)
                          theorem Complex.inv_re_add_im {x y : } :
                          (x + y * I)⁻¹ = (x - I * y) / (x ^ 2 + y ^ 2)
                          theorem sq_add_sq_ne_zero {x y : } (hy : y 0) :
                          x ^ 2 + y ^ 2 0
                          theorem continuous_self_div_sq_add_sq {y : } (hy : y 0) :
                          Continuous fun (x : ) => x / (x ^ 2 + y ^ 2)
                          theorem integral_self_div_sq_add_sq {x₁ x₂ y : } (hy : y 0) :
                          (x : ) in x₁..x₂, x / (x ^ 2 + y ^ 2) = Real.log (x₂ ^ 2 + y ^ 2) / 2 - Real.log (x₁ ^ 2 + y ^ 2) / 2
                          theorem integral_const_div_sq_add_sq {x₁ x₂ y : } (hy : y 0) :
                          (x : ) in x₁..x₂, y / (x ^ 2 + y ^ 2) = Real.arctan (x₂ / y) - Real.arctan (x₁ / y)
                          theorem integral_const_div_self_add_im {A : } {x₁ x₂ y : } (hy : y 0) :
                          (x : ) in x₁..x₂, A / (x + y * Complex.I) = A * ((Real.log (x₂ ^ 2 + y ^ 2)) / 2 - (Real.log (x₁ ^ 2 + y ^ 2)) / 2) - A * Complex.I * ((Real.arctan (x₂ / y)) - (Real.arctan (x₁ / y)))
                          theorem integral_const_div_re_add_self {A : } {x y₁ y₂ : } (hx : x 0) :
                          (y : ) in y₁..y₂, A / (x + y * Complex.I) = A / Complex.I * ((Real.log (y₂ ^ 2 + (-x) ^ 2)) / 2 - (Real.log (y₁ ^ 2 + (-x) ^ 2)) / 2) - A / Complex.I * Complex.I * ((Real.arctan (y₂ / -x)) - (Real.arctan (y₁ / -x)))
                          theorem ResidueTheoremAtOrigin' {z w c : } (h1 : z.re < 0) (h2 : z.im < 0) (h3 : 0 < w.re) (h4 : 0 < w.im) :
                          RectangleIntegral (fun (s : ) => c / s) z w = 2 * Complex.I * Real.pi * c
                          theorem ResidueTheoremInRectangle {z w p c : } (zRe_le_wRe : z.re w.re) (zIm_le_wIm : z.im w.im) (pInRectInterior : z.Rectangle w nhds p) :
                          RectangleIntegral' (fun (s : ) => c / (s - p)) z w = c
                          theorem ResidueTheoremOnRectangleWithSimplePole {f g : } {z w p A : } (zRe_le_wRe : z.re w.re) (zIm_le_wIm : z.im w.im) (pInRectInterior : z.Rectangle w nhds p) (gHolo : HolomorphicOn g (z.Rectangle w)) (principalPart : Set.EqOn (f - fun (s : ) => A / (s - p)) g (z.Rectangle w \ {p})) :