@[simp]
@[simp]
theorem
ContinuousLinearEquiv.coe_toLinearEquiv_symm
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[Semiring S]
{σ : R →+* S}
{σ' : S →+* R}
[RingHomInvPair σ σ']
[RingHomInvPair σ' σ]
(M : Type u_3)
[TopologicalSpace M]
[AddCommMonoid M]
{M₂ : Type u_4}
[TopologicalSpace M₂]
[AddCommMonoid M₂]
[Module R M]
[Module S M₂]
(e : M ≃SL[σ] M₂)
:
The axis-parallel complex rectangle with opposite corners z
and w
is complex product
of two intervals, which is also the convex hull of the four corners. Golfed from mathlib4#9598.
theorem
rectangle_in_convex
{U : Set ℂ}
(U_convex : Convex ℝ U)
{z w : ℂ}
(hz : z ∈ U)
(hw : w ∈ U)
(hzw : ↑z.re + ↑w.im * Complex.I ∈ U)
(hwz : ↑w.re + ↑z.im * Complex.I ∈ U)
:
If the four corners of a rectangle are contained in a convex set U
, then the whole
rectangle is. Golfed from mathlib4#9598.
theorem
mapsTo_rectangleBorder_left_re
(z w : ℂ)
:
Set.MapsTo (fun (y : ℝ) => ↑z.re + ↑y * Complex.I) (Set.uIcc z.im w.im) (RectangleBorder z w)
theorem
mapsTo_rectangleBorder_right_re
(z w : ℂ)
:
Set.MapsTo (fun (y : ℝ) => ↑w.re + ↑y * Complex.I) (Set.uIcc z.im w.im) (RectangleBorder z w)
theorem
mapsTo_rectangleBorder_left_im
(z w : ℂ)
:
Set.MapsTo (fun (x : ℝ) => ↑x + ↑z.im * Complex.I) (Set.uIcc z.re w.re) (RectangleBorder z w)
theorem
mapsTo_rectangleBorder_right_im
(z w : ℂ)
:
Set.MapsTo (fun (x : ℝ) => ↑x + ↑w.im * Complex.I) (Set.uIcc z.re w.re) (RectangleBorder z w)
theorem
not_mem_rectangleBorder_of_rectangle_mem_nhds
{z w p : ℂ}
(hp : z.Rectangle w ∈ nhds p)
:
p ∉ RectangleBorder z w