Documentation

PrimeNumberTheoremAnd.Rectangle

theorem Rectangle.symm {z w : } :
theorem Rectangle.symm_re {z w : } :
(w.re + z.im * Complex.I).Rectangle (z.re + w.im * Complex.I) = z.Rectangle w
def RectangleBorder (z w : ) :

A RectangleBorder has corners z and w.

Equations
Instances For
    def Square (p : ) (c : ) :
    Equations
    Instances For
      theorem Square_apply {c : } (p : ) (cpos : c > 0) :
      Square p c = Set.Icc (-c + p.re) (c + p.re) ×ℂ Set.Icc (-c + p.im) (c + p.im)
      @[simp]
      theorem ContinuousLinearEquiv.coe_toLinearEquiv_symm {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {σ : R →+* S} {σ' : S →+* R} [RingHomInvPair σ σ'] [RingHomInvPair σ' σ] (M : Type u_3) [TopologicalSpace M] [AddCommMonoid M] {M₂ : Type u_4} [TopologicalSpace M₂] [AddCommMonoid M₂] [Module R M] [Module S M₂] (e : M ≃SL[σ] M₂) :
      e.symm = e.symm

      The axis-parallel complex rectangle with opposite corners z and w is complex product of two intervals, which is also the convex hull of the four corners. Golfed from mathlib4#9598.

      theorem rectangle_in_convex {U : Set } (U_convex : Convex U) {z w : } (hz : z U) (hw : w U) (hzw : z.re + w.im * Complex.I U) (hwz : w.re + z.im * Complex.I U) :

      If the four corners of a rectangle are contained in a convex set U, then the whole rectangle is. Golfed from mathlib4#9598.

      theorem mem_Rect {z w : } (zRe_lt_wRe : z.re w.re) (zIm_lt_wIm : z.im w.im) (p : ) :
      p z.Rectangle w z.re p.re p.re w.re z.im p.im p.im w.im
      theorem square_neg (p : ) (c : ) :
      Square p (-c) = Square p c
      theorem Set.left_not_mem_uIoo {a b : } :
      auIoo a b
      theorem Set.right_not_mem_uIoo {a b : } :
      buIoo a b
      theorem Set.ne_left_of_mem_uIoo {a b c : } (hc : c uIoo a b) :
      c a
      theorem Set.ne_right_of_mem_uIoo {a b c : } (hc : c uIoo a b) :
      c b
      theorem left_mem_rect (z w : ) :
      theorem right_mem_rect (z w : ) :
      theorem rect_subset_iff {z w z' w' : } :
      theorem RectSubRect {x₀ x₁ x₂ x₃ y₀ y₁ y₂ y₃ : } (x₀_le_x₁ : x₀ x₁) (x₁_le_x₂ : x₁ x₂) (x₂_le_x₃ : x₂ x₃) (y₀_le_y₁ : y₀ y₁) (y₁_le_y₂ : y₁ y₂) (y₂_le_y₃ : y₂ y₃) :
      (x₁ + y₁ * Complex.I).Rectangle (x₂ + y₂ * Complex.I) (x₀ + y₀ * Complex.I).Rectangle (x₃ + y₃ * Complex.I)
      theorem RectSubRect' {z₀ z₁ z₂ z₃ : } (x₀_le_x₁ : z₀.re z₁.re) (x₁_le_x₂ : z₁.re z₂.re) (x₂_le_x₃ : z₂.re z₃.re) (y₀_le_y₁ : z₀.im z₁.im) (y₁_le_y₂ : z₁.im z₂.im) (y₂_le_y₃ : z₂.im z₃.im) :
      z₁.Rectangle z₂ z₀.Rectangle z₃
      theorem rectangle_disjoint_singleton {z w p : } (h : p.re < z.re p.re < w.re p.im < z.im p.im < w.im z.re < p.re w.re < p.re z.im < p.im w.im < p.im) :

      Note: try using by simp for h.

      theorem rectangle_subset_punctured_rect {z₀ z₁ z₂ z₃ p : } (hz : z₀.re z₁.re z₁.re z₂.re z₂.re z₃.re z₀.im z₁.im z₁.im z₂.im z₂.im z₃.im) (hp : p.re < z₁.re p.re < z₂.re p.im < z₁.im p.im < z₂.im z₁.re < p.re z₂.re < p.re z₁.im < p.im z₂.im < p.im) :
      z₁.Rectangle z₂ z₀.Rectangle z₃ \ {p}
      theorem rectangleBorder_subset_punctured_rect {z₀ z₁ z₂ z₃ p : } (hz : z₀.re z₁.re z₁.re z₂.re z₂.re z₃.re z₀.im z₁.im z₁.im z₂.im z₂.im z₃.im) (hp : p.re z₁.re p.re z₂.re p.im z₁.im p.im z₂.im) :
      RectangleBorder z₁ z₂ z₀.Rectangle z₃ \ {p}
      theorem mapsTo_rectangle_left_re (z w : ) :
      Set.MapsTo (fun (y : ) => z.re + y * Complex.I) (Set.uIcc z.im w.im) (z.Rectangle w)
      theorem mapsTo_rectangle_right_re (z w : ) :
      Set.MapsTo (fun (y : ) => w.re + y * Complex.I) (Set.uIcc z.im w.im) (z.Rectangle w)
      theorem mapsTo_rectangle_left_im (z w : ) :
      Set.MapsTo (fun (x : ) => x + z.im * Complex.I) (Set.uIcc z.re w.re) (z.Rectangle w)
      theorem mapsTo_rectangle_right_im (z w : ) :
      Set.MapsTo (fun (x : ) => x + w.im * Complex.I) (Set.uIcc z.re w.re) (z.Rectangle w)
      theorem mapsTo_rectangleBorder_left_re (z w : ) :
      Set.MapsTo (fun (y : ) => z.re + y * Complex.I) (Set.uIcc z.im w.im) (RectangleBorder z w)
      theorem mapsTo_rectangleBorder_right_re (z w : ) :
      Set.MapsTo (fun (y : ) => w.re + y * Complex.I) (Set.uIcc z.im w.im) (RectangleBorder z w)
      theorem mapsTo_rectangleBorder_left_im (z w : ) :
      Set.MapsTo (fun (x : ) => x + z.im * Complex.I) (Set.uIcc z.re w.re) (RectangleBorder z w)
      theorem mapsTo_rectangleBorder_right_im (z w : ) :
      Set.MapsTo (fun (x : ) => x + w.im * Complex.I) (Set.uIcc z.re w.re) (RectangleBorder z w)
      theorem mapsTo_rectangle_left_re_NoP (z w : ) {p : } (pNotOnBorder : pRectangleBorder z w) :
      Set.MapsTo (fun (y : ) => z.re + y * Complex.I) (Set.uIcc z.im w.im) (z.Rectangle w \ {p})
      theorem mapsTo_rectangle_right_re_NoP (z w : ) {p : } (pNotOnBorder : pRectangleBorder z w) :
      Set.MapsTo (fun (y : ) => w.re + y * Complex.I) (Set.uIcc z.im w.im) (z.Rectangle w \ {p})
      theorem mapsTo_rectangle_left_im_NoP (z w : ) {p : } (pNotOnBorder : pRectangleBorder z w) :
      Set.MapsTo (fun (x : ) => x + z.im * Complex.I) (Set.uIcc z.re w.re) (z.Rectangle w \ {p})
      theorem mapsTo_rectangle_right_im_NoP (z w : ) {p : } (pNotOnBorder : pRectangleBorder z w) :
      Set.MapsTo (fun (x : ) => x + w.im * Complex.I) (Set.uIcc z.re w.re) (z.Rectangle w \ {p})
      theorem Complex.nhds_hasBasis_square (p : ) :
      (nhds p).HasBasis (fun (x : ) => 0 < x) fun (x : ) => Square p x
      theorem square_mem_nhds (p : ) {c : } (hc : c 0) :
      theorem square_subset_square {p : } {c₁ c₂ : } (hc₁ : 0 < c₁) (hc : c₁ c₂) :
      Square p c₁ Square p c₂
      theorem SmallSquareInRectangle {z w p : } (pInRectInterior : z.Rectangle w nhds p) :