Equations
- riemannzeta = Lean.ParserDescr.node `riemannzeta 1024 (Lean.ParserDescr.symbol "ζ")
Instances For
Equations
- derivriemannzeta = Lean.ParserDescr.node `derivriemannzeta 1024 (Lean.ParserDescr.symbol "ζ'")
Instances For
theorem
map_inv_nhdsWithin_direct
(h : ℂ → ℂ)
(U : Set ℂ)
(p A : ℂ)
(A_ne_zero : A ≠ 0)
:
Filter.map h (nhdsWithin p U) ≤ nhds A → Filter.map (fun (x : ℂ) => (h x)⁻¹) (nhdsWithin p U) ≤ nhds A⁻¹
theorem
map_inv_nhdsWithin_direct_alt
(h : ℂ → ℂ)
(p A : ℂ)
(A_ne_zero : A ≠ 0)
:
Filter.map h (nhdsWithin p {p}ᶜ) ≤ nhds A → Filter.map (fun (x : ℂ) => (h x)⁻¹) (nhdsWithin p {p}ᶜ) ≤ nhds A⁻¹
We use ζ
to denote the Rieman zeta function and ζ₀
to denote the alternative
Rieman zeta function..
Equations
- riemannzeta0 = Lean.ParserDescr.node `riemannzeta0 1024 (Lean.ParserDescr.symbol "ζ₀")
Instances For
theorem
Real.differentiableAt_cpow_const_of_ne
(s : ℂ)
{x : ℝ}
(xpos : 0 < x)
:
DifferentiableAt ℝ (fun (x : ℝ) => ↑x ^ s) x
theorem
ContDiffOn.hasDeriv_deriv
{φ : ℝ → ℂ}
{s : Set ℝ}
(φDiff : ContDiffOn ℝ 1 φ s)
{x : ℝ}
(x_in_s : s ∈ nhds x)
:
HasDerivAt φ (deriv φ x) x
theorem
ContDiffOn.continuousOn_deriv
{φ : ℝ → ℂ}
{a b : ℝ}
(φDiff : ContDiffOn ℝ 1 φ (Set.uIoo a b))
:
ContinuousOn (deriv φ) (Set.uIoo a b)
theorem
integral_deriv_mul_eq_sub'
{A : Type u_1}
[NormedRing A]
[NormedAlgebra ℝ A]
[CompleteSpace A]
{a b : ℝ}
{u v u' v' : ℝ → A}
(hu : ∀ x ∈ Set.uIcc a b, HasDerivWithinAt u (u' x) (Set.uIcc a b) x)
(hv : ∀ x ∈ Set.uIcc a b, HasDerivWithinAt v (v' x) (Set.uIcc a b) x)
(hu' : IntervalIntegrable u' MeasureTheory.volume a b)
(hv' : IntervalIntegrable v' MeasureTheory.volume a b)
:
theorem
sum_eq_int_deriv_aux_eq
{φ : ℝ → ℂ}
{a b : ℝ}
{k : ℤ}
(b_eq_kpOne : b = ↑k + 1)
(φDiff : ∀ x ∈ Set.uIcc a b, HasDerivAt φ (deriv φ x) x)
(derivφCont : ContinuousOn (deriv φ) (Set.uIcc a b))
:
theorem
sum_eq_int_deriv_aux_lt
{φ : ℝ → ℂ}
{a b : ℝ}
{k : ℤ}
(ha : a ∈ Set.Ico (↑k) b)
(b_lt_kpOne : b < ↑k + 1)
(φDiff : ∀ x ∈ Set.uIcc a b, HasDerivAt φ (deriv φ x) x)
(derivφCont : ContinuousOn (deriv φ) (Set.uIcc a b))
:
theorem
sum_eq_int_deriv_aux1
{φ : ℝ → ℂ}
{a b : ℝ}
{k : ℤ}
(ha : a ∈ Set.Ico (↑k) b)
(b_le_kpOne : b ≤ ↑k + 1)
(φDiff : ∀ x ∈ Set.uIcc a b, HasDerivAt φ (deriv φ x) x)
(derivφCont : ContinuousOn (deriv φ) (Set.uIcc a b))
:
theorem
sum_eq_int_deriv_aux
{φ : ℝ → ℂ}
{a b : ℝ}
{k : ℤ}
(ha : a ∈ Set.Ico (↑k) b)
(b_le_kpOne : b ≤ ↑k + 1)
(φDiff : ∀ x ∈ Set.uIcc a b, HasDerivAt φ (deriv φ x) x)
(derivφCont : ContinuousOn (deriv φ) (Set.uIcc a b))
:
theorem
Finset.Ioc_diff_Ioc
{α : Type u_1}
[LinearOrder α]
[LocallyFiniteOrder α]
{a b c : α}
[DecidableEq α]
(hb : b ∈ Icc a c)
:
** Partial summation ** (TODO : Add to Mathlib).
theorem
integrability_aux₁
{a b : ℝ}
:
IntervalIntegrable (fun (x : ℝ) => ↑⌊x⌋) MeasureTheory.volume a b
theorem
integrability_aux₂
{a b : ℝ}
:
IntervalIntegrable (fun (x : ℝ) => 1 / 2 - ↑x) MeasureTheory.volume a b
theorem
integrability_aux
{a b : ℝ}
:
IntervalIntegrable (fun (x : ℝ) => ↑⌊x⌋ + 1 / 2 - ↑x) MeasureTheory.volume a b
theorem
sum_eq_int_deriv
{φ : ℝ → ℂ}
{a b : ℝ}
(a_lt_b : a < b)
(φDiff : ∀ x ∈ Set.uIcc a b, HasDerivAt φ (deriv φ x) x)
(derivφCont : ContinuousOn (deriv φ) (Set.uIcc a b))
:
theorem
ZetaSum_aux1_5b
{a b : ℝ}
(apos : 0 < a)
(a_lt_b : a < b)
{s : ℂ}
(σpos : 0 < s.re)
:
IntervalIntegrable (fun (u : ℝ) => 1 / u ^ (s.re + 1)) MeasureTheory.volume a b
theorem
finsetSum_tendsto_tsum
{N : ℕ}
{f : ℕ → ℂ}
(hf : Summable f)
:
Filter.Tendsto (fun (k : ℕ) => ∑ n ∈ Finset.Ico N k, f n) Filter.atTop (nhds (∑' (n : ℕ), f (n + N)))
theorem
Complex.cpow_tendsto
{s : ℂ}
(s_re_gt : 1 < s.re)
:
Filter.Tendsto (fun (x : ℕ) => ↑x ^ (1 - s)) Filter.atTop (nhds 0)
theorem
Complex.cpow_inv_tendsto
{s : ℂ}
(hs : 0 < s.re)
:
Filter.Tendsto (fun (x : ℕ) => (↑x ^ s)⁻¹) Filter.atTop (nhds 0)
theorem
ZetaSum_aux3
{N : ℕ}
{s : ℂ}
(s_re_gt : 1 < s.re)
:
Filter.Tendsto (fun (k : ℕ) => ∑ n ∈ Finset.Ioc N k, 1 / ↑n ^ s) Filter.atTop (nhds (∑' (n : ℕ), 1 / (↑n + ↑N + 1) ^ s))
theorem
HasDerivAtZeta0
{N : ℕ}
(Npos : 0 < N)
{s : ℂ}
(reS_pos : 0 < s.re)
(s_ne_one : s ≠ 1)
:
HasDerivAt (riemannZeta0 N) (ζ₀' N s) s
theorem
add_le_add_le_add
{α : Type u_1}
[Add α]
[Preorder α]
[CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x ≤ x_1]
[CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x ≤ x_1]
{a b c d e f : α}
(h₁ : a ≤ b)
(h₂ : c ≤ d)
(h₃ : e ≤ f)
:
theorem
add_le_add_le_add_le_add
{α : Type u_1}
[Add α]
[Preorder α]
[CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x ≤ x_1]
[CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x ≤ x_1]
{a b c d e f g h : α}
(h₁ : a ≤ b)
(h₂ : c ≤ d)
(h₃ : e ≤ f)
(h₄ : g ≤ h)
:
theorem
mul_le_mul₃
{α : Type u_1}
{a b c d e f : α}
[MulZeroClass α]
[Preorder α]
[PosMulMono α]
[MulPosMono α]
(h₁ : a ≤ b)
(h₂ : c ≤ d)
(h₃ : e ≤ f)
(c0 : 0 ≤ c)
(b0 : 0 ≤ b)
(e0 : 0 ≤ e)
:
theorem
DerivUpperBnd_aux7_4
{a σ : ℝ}
(σpos : 0 < σ)
(ha : 1 ≤ a)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => x ^ (-σ - 1) * Real.log x) (Set.Ioi a) MeasureTheory.volume
theorem
ZetaDerivUpperBnd'
{A σ t : ℝ}
(hA : A ∈ Set.Ioc 0 (1 / 2))
(t_gt : 3 < |t|)
(hσ : σ ∈ Set.Icc (1 - A / Real.log |t|) 2)
:
let C := Real.exp A * 59;
let N := ⌊|t|⌋₊;
let s := ↑σ + ↑t * Complex.I;
‖∑ n ∈ Finset.range (N + 1), -1 / ↑n ^ s * ↑(Real.log ↑n)‖ + ‖-↑N ^ (1 - s) / (1 - s) ^ 2‖ + ‖↑(Real.log ↑N) * ↑N ^ (1 - s) / (1 - s)‖ + ‖↑(Real.log ↑N) * ↑N ^ (-s) / 2‖ + ‖1 * ∫ (x : ℝ) in Set.Ioi ↑N, (↑⌊x⌋ + 1 / 2 - ↑x) * ↑x ^ (-s - 1)‖ + ‖s * ∫ (x : ℝ) in Set.Ioi ↑N, (↑⌊x⌋ + 1 / 2 - ↑x) * ↑x ^ (-s - 1) * -↑(Real.log x)‖ ≤ C * Real.log |t| ^ 2
theorem
Tendsto_nhdsWithin_punctured_map_add
{f : ℝ → ℝ}
(a x : ℝ)
(f_mono : StrictMono f)
(f_iso : Isometry f)
:
Filter.Tendsto (fun (y : ℝ) => f y + a) (nhdsWithin x (Set.Ioi x)) (nhdsWithin (f x + a) (Set.Ioi (f x + a)))
theorem
Tendsto_nhdsWithin_punctured_add
(a x : ℝ)
:
Filter.Tendsto (fun (y : ℝ) => y + a) (nhdsWithin x (Set.Ioi x)) (nhdsWithin (x + a) (Set.Ioi (x + a)))
theorem
LogDerivZetaHoloOn
{S : Set ℂ}
(s_ne_one : 1 ∉ S)
(nonzero : ∀ s ∈ S, riemannZeta s ≠ 0)
:
HolomorphicOn (fun (s : ℂ) => deriv riemannZeta s / riemannZeta s) S
theorem
LogDerivZetaHolcSmallT :
∃ (σ₂ : ℝ) (_ : σ₂ < 1),
HolomorphicOn (fun (s : ℂ) => deriv riemannZeta s / riemannZeta s) (Set.uIcc σ₂ 2 ×ℂ Set.uIcc (-3) 3 \ {1})