theorem
isBigO_comp_principal_domain
{α : Type u_1}
{β : Type u_2}
{E : Type u_3}
{F : Type u_4}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
{f : β → E}
{g : β → F}
{h : α → β}
{l : Filter α}
{s : Set β}
(hfg : f =O[Filter.principal s] g)
(h_domain : ∀ᶠ (x : α) in l, h x ∈ s)
:
theorem
isBigOWith_comp_principal_domain
{α : Type u_1}
{β : Type u_2}
{E : Type u_3}
{F : Type u_4}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
{C : ℝ}
{f : β → E}
{g : β → F}
{h : α → β}
{l : Filter α}
{s : Set β}
(hfg : Asymptotics.IsBigOWith C (Filter.principal s) f g)
(h_domain : ∀ᶠ (x : α) in l, h x ∈ s)
:
Asymptotics.IsBigOWith C l (f ∘ h) (g ∘ h)
theorem
s_notin_ZetaZerosNearPoint
(δ t : ℝ)
(hδ_pos : 0 < δ)
:
1 + ↑δ + ↑t * Complex.I ∉ ZetaZerosNearPoint t
theorem
lem_Re1deltatge0m
(delta : ℝ)
(hdelta : delta > 0)
(t : ℝ)
(hdelta_lt_1 : delta < 1)
(rho1 : ℂ)
(h_rho1_in_Zt : rho1 ∈ ZetaZerosNearPoint t)
:
theorem
lem_Z1split
(delta : ℝ)
(_hdelta : delta > 0)
(hdelta : delta < 1)
(rho : ℂ)
(_h_rho_in_zeroZ : rho ∈ zeroZ)
(h_rho_in_Zt : rho ∈ ZetaZerosNearPoint rho.im)
:
∑ rho1 ∈ ⋯.toFinset, (↑(analyticOrderAt riemannZeta rho1).toNat / (1 + ↑delta + ↑rho.im * Complex.I - rho1)).re = (↑(analyticOrderAt riemannZeta rho).toNat / (1 + ↑delta + ↑rho.im * Complex.I - rho)).re + ∑ rho1 ∈ ⋯.toFinset.erase rho,
(↑(analyticOrderAt riemannZeta rho1).toNat / (1 + ↑delta + ↑rho.im * Complex.I - rho1)).re
theorem
lem_Z1splitge
(delta : ℝ)
(hdelta_pos : delta > 0)
(hdelta : delta < 1)
(rho : ℂ)
(h_rho_in_zeroZ : rho ∈ zeroZ)
(h_rho_in_Zt : rho ∈ ZetaZerosNearPoint rho.im)
:
theorem
lem_Z1splitge2
(delta : ℝ)
(hdelta : delta > 0)
(hdelta_lt_1 : delta < 1)
(rho : ℂ)
(h_rho_in_zeroZ : rho ∈ zeroZ)
(h_rho_in_Zt : rho ∈ ZetaZerosNearPoint rho.im)
:
theorem
neg_logDeriv_zeta_eq_vonMangoldt_sum
(s : ℂ)
(hs : 1 < s.re)
:
-(deriv riemannZeta s / riemannZeta s) = ∑' (n : ℕ), ↑(ArithmeticFunction.vonMangoldt n) * ↑n ^ (-s)
theorem
vonMangoldt_LSeriesSummable
(s : ℂ)
(hs : 1 < s.re)
:
LSeriesSummable (fun (n : ℕ) => ↑(ArithmeticFunction.vonMangoldt n)) s
theorem
summable_of_support_singleton
{α : Type u_1}
[SeminormedAddCommGroup α]
(f : ℕ → α)
(n₀ : ℕ)
(h : ∀ (n : ℕ), n ≠ n₀ → f n = 0)
:
Summable f
theorem
summable_of_summable_add_sub
{α : Type u_1}
[SeminormedAddCommGroup α]
(f g h : ℕ → α)
(h_eq : f = g + h)
(hf : Summable f)
(hh : Summable h)
:
Summable g
There exists a constant C > 0
such that for all δ > 0
,
‖ -logDerivZeta (1 + δ) - 1/δ ‖ ≤ C
.
There exists a constant C > 0
such that for all δ > 0
,
Re(-logDerivZeta (1 + δ) - 1/δ) ≤ C
.
There exists a constant C > 0
such that for all δ > 0
,
Re(-logDerivZeta (1 + δ)) - 1/δ ≤ C
.
theorem
Z341series
(t delta : ℝ)
(hdelta : delta > 0)
:
3 * (-logDerivZeta (1 + ↑delta)).re + 4 * (-logDerivZeta (1 + ↑delta + ↑t * I)).re + (-logDerivZeta (1 + ↑delta + 2 * ↑t * I)).re = 3 * ∑' (n : ℕ), ArithmeticFunction.vonMangoldt n * ↑n ^ (-(1 + delta)) + 4 * ∑' (n : ℕ), ArithmeticFunction.vonMangoldt n * ↑n ^ (-(1 + delta)) * Real.cos (t * Real.log ↑n) + ∑' (n : ℕ), ArithmeticFunction.vonMangoldt n * ↑n ^ (-(1 + delta)) * Real.cos (2 * t * Real.log ↑n)
theorem
lem341series
(t delta : ℝ)
(hdelta : delta > 0)
:
3 * ∑' (n : ℕ), ArithmeticFunction.vonMangoldt n * ↑n ^ (-(1 + delta)) + 4 * ∑' (n : ℕ), ArithmeticFunction.vonMangoldt n * ↑n ^ (-(1 + delta)) * Real.cos (t * Real.log ↑n) + ∑' (n : ℕ), ArithmeticFunction.vonMangoldt n * ↑n ^ (-(1 + delta)) * Real.cos (2 * t * Real.log ↑n) = ∑' (n : ℕ), ArithmeticFunction.vonMangoldt n * ↑n ^ (-(1 + delta)) * (3 + 4 * Real.cos (t * Real.log ↑n) + Real.cos (2 * t * Real.log ↑n))
Equations
Instances For
theorem
riemannZeta_no_zeros_accumulate_at_one
(Z : Set ℂ)
:
(∀ z ∈ Z, riemannZeta z = 0) → ¬AccPt 1 (Filter.principal Z)
theorem
lem_Zeta_Expansion_ZFR :
∃ C_1 > 1,
∀ (t : ℝ),
|t| > 3 →
let c := 3 / 2 + I * ↑t;
∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite) (z : ℂ),
1 - deltaz_t t ≤ z.re ∧ z.re ≤ 3 / 2 ∧ z.im = t →
‖deriv riemannZeta z / riemannZeta z - ∑ ρ ∈ hfin.toFinset, ↑(analyticOrderAt riemannZeta ρ).toNat / (z - ρ)‖ ≤ C_1 * Real.log |t|
theorem
lem_m_rho_zeta_nat
(t : ℝ)
(ht : |t| > 3)
(ρ : ℂ)
:
let c := 3 / 2 + I * ↑t;
ρ ∈ zerosetKfRc (5 / 6) c riemannZeta → ∃ (n : ℕ), analyticOrderAt riemannZeta ρ = ↑n
theorem
lem_finiteKzeta
(t : ℝ)
(ht : |t| > 3)
:
let c := 3 / 2 + I * ↑t;
(zerosetKfRc (5 / 6) c riemannZeta).Finite
theorem
lem_Zeta_Triangle_ZFR :
∃ C_1 > 1,
∀ (t : ℝ),
|t| > 3 →
let c := 3 / 2 + I * ↑t;
∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite) (z : ℂ),
1 - deltaz_t t ≤ z.re ∧ z.re ≤ 3 / 2 ∧ z.im = t →
‖deriv riemannZeta z / riemannZeta z‖ ≤ ‖∑ ρ ∈ hfin.toFinset, ↑(analyticOrderAt riemannZeta ρ).toNat / (z - ρ)‖ + C_1 * Real.log |t|
theorem
helper_analyticOnNhd_shift_div
(f : ℂ → ℂ)
(c : ℂ)
(h : ∀ z ∈ Metric.closedBall c 1, AnalyticAt ℂ f z)
(hc : f c ≠ 0)
:
AnalyticOnNhd ℂ (fun (z : ℂ) => f (z + c) / f c) (Metric.closedBall 0 1)
theorem
helper_finite_zeros_shift
(r : ℝ)
(hr : r > 0)
(c : ℂ)
(f : ℂ → ℂ)
(hc : f c ≠ 0)
(h_analytic : AnalyticOnNhd ℂ f (Metric.closedBall c 1))
(hfin : (zerosetKfRc r c f).Finite)
:
(zerosetKfRc r 0 fun (z : ℂ) => f (z + c) / f c).Finite
theorem
helper_apply_jensen_to_g
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(g : ℂ → ℂ)
(h_g_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ g z)
(hg0_ne : g 0 ≠ 0)
(hg0_one : g 0 = 1)
(hfin_g : (zerosetKfR R1 ⋯ g).Finite)
(hg_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖g z‖ ≤ B)
:
theorem
helper_sum_f_equals_sum_g
(r : ℝ)
(hr : r > 0)
(c : ℂ)
(f : ℂ → ℂ)
(hc : f c ≠ 0)
(h_analytic : AnalyticOnNhd ℂ f (Metric.closedBall c 1))
(hfin : (zerosetKfRc r c f).Finite)
:
∑ ρ ∈ hfin.toFinset, ↑(analyticOrderAt f ρ).toNat = ∑ ρ' ∈ ⋯.toFinset, ↑(analyticOrderAt (fun (z : ℂ) => f (z + c) / f c) ρ').toNat
theorem
helper_zero_set_shift_eq
(r : ℝ)
(hr : r > 0)
(c : ℂ)
(f : ℂ → ℂ)
(hc : f c ≠ 0)
(h_analytic : AnalyticOnNhd ℂ f (Metric.closedBall c 1))
:
theorem
helper_fin_zero_g_is_image
(r : ℝ)
(hr : r > 0)
(c : ℂ)
(f : ℂ → ℂ)
(hc : f c ≠ 0)
(h_analytic : AnalyticOnNhd ℂ f (Metric.closedBall c 1))
(hfin : (zerosetKfRc r c f).Finite)
:
(zerosetKfRc r 0 fun (z : ℂ) => f (z + c) / f c).Finite
theorem
helper_AnalyticOnNhd_to_pointwise
{S : Set ℂ}
{f : ℂ → ℂ}
(h : AnalyticOnNhd ℂ f S)
(z : ℂ)
:
z ∈ S → AnalyticAt ℂ f z
theorem
jensen_sum_bound_strict
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(g : ℂ → ℂ)
(h_g_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ g z)
(hg0_ne : g 0 ≠ 0)
(hg0_one : g 0 = 1)
(hfin_g : (zerosetKfR R1 ⋯ g).Finite)
(hg_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖g z‖ ≤ B)
:
theorem
helper_pointwise_to_AnalyticOnNhd
{S : Set ℂ}
{f : ℂ → ℂ}
(h : ∀ z ∈ S, AnalyticAt ℂ f z)
:
AnalyticOnNhd ℂ f S
theorem
lem_sum_m_rho_bound_c
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(c : ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall c 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f c ≠ 0)
(hf_le_B : ∀ z ∈ Metric.closedBall c R, ‖f z‖ ≤ B)
(hfin : (zerosetKfRc R1 c f).Finite)
:
theorem
lem_sum_m_rho_zeta :
∃ C_2 > 1,
∀ (t : ℝ),
|t| > 3 →
let c := 3 / 2 + I * ↑t;
∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite),
∑ ρ ∈ hfin.toFinset, ↑(analyticOrderAt riemannZeta ρ).toNat ≤ C_2 * Real.log |t|
theorem
lem_term_real_nonneg
(n : ℕ)
(σ : ℝ)
(hσ : 1 < σ)
:
∃ r ≥ 0, ↑(ArithmeticFunction.vonMangoldt n) / ↑n ^ ↑σ = ↑r
theorem
lem_zetacenterbd
(t σ : ℝ)
:
σ ≥ 3 / 2 →
‖deriv riemannZeta { re := σ, im := t } / riemannZeta { re := σ, im := t }‖ ≤ ‖deriv riemannZeta ↑σ / riemannZeta ↑σ‖