Documentation

StrongPNT.PNT4_ZeroFreeRegion

Equations
Instances For
    Equations
    Instances For
      theorem lem_Re1zge0 (z : ) :
      z.re > 0(1 / z).re > 0
      theorem lem_sigmage1 (sigma t : ) (hsigma : sigma > 1) :
      riemannZeta (sigma + t * Complex.I) 0
      theorem lem_sigmale1 (sigma1 t1 : ) :
      riemannZeta (sigma1 + t1 * Complex.I) = 0sigma1 1
      theorem lem_sigmale1Zt (t : ) (rho1 : ) (h_rho1_in_Zt : rho1 ZetaZerosNearPoint t) :
      rho1.re 1
      theorem lem_s_notin_Zt (δ : ) ( : 0 < δ) (t : ) :
      1 + δ + t * Complex.IZetaZerosNearPoint t
      theorem complex_add_real_imag_parts (a b t : ) :
      (a + b + t * Complex.I).re = a + b (a + b + t * Complex.I).im = t
      theorem isBigO_comp_principal_domain {α : Type u_1} {β : Type u_2} {E : Type u_3} {F : Type u_4} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] {f : βE} {g : βF} {h : αβ} {l : Filter α} {s : Set β} (hfg : f =O[Filter.principal s] g) (h_domain : ∀ᶠ (x : α) in l, h x s) :
      (f h) =O[l] (g h)
      theorem isBigOWith_comp_principal_domain {α : Type u_1} {β : Type u_2} {E : Type u_3} {F : Type u_4} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] {C : } {f : βE} {g : βF} {h : αβ} {l : Filter α} {s : Set β} (hfg : Asymptotics.IsBigOWith C (Filter.principal s) f g) (h_domain : ∀ᶠ (x : α) in l, h x s) :
      theorem s_in_D12 (delta : ) (hdelta_pos : 0 < delta) (t : ) (hdelta_lt : delta < 1) :
      1 + delta + t * Complex.I Metric.ball (3 / 2 + t * Complex.I) (1 / 2)
      theorem mem_closedBall_of_mem_ball {x c : } {r : } (hx : x Metric.ball c r) :
      theorem center_eq_comm (t : ) :
      3 / 2 + Complex.I * t = 3 / 2 + t * Complex.I
      theorem s_notin_ZetaZerosNearPoint (δ t : ) (hδ_pos : 0 < δ) :
      1 + δ + t * Complex.IZetaZerosNearPoint t
      theorem norm_sub_comm' (x y : ) :
      x - y = y - x
      theorem s_in_closedBall_12 (δ t : ) (hδ_pos : 0 < δ) (hδ_lt : δ < 1) :
      1 + δ + t * Complex.I Metric.closedBall (3 / 2 + t * Complex.I) (1 / 2)
      theorem lem_explicit1deltat :
      C > 1, ∀ (t : ), 2 < |t|∀ (δ : ), 0 < δ δ < 1rho1.toFinset, (analyticOrderAt riemannZeta rho1).toNat / (1 + δ + t * Complex.I - rho1) - logDerivZeta (1 + δ + t * Complex.I) C * Real.log (|t| + 2)
      theorem lem_explicit1RealReal :
      C > 1, ∀ (t : ), 2 < |t|∀ (δ : ), 0 < δ δ < 1|(logDerivZeta (1 + δ + t * Complex.I)).re - rho1.toFinset, ((analyticOrderAt riemannZeta rho1).toNat / (1 + δ + t * Complex.I - rho1)).re| C * Real.log (|t| + 2)
      theorem lem_explicit2Real :
      C > 1, ∀ (t : ), 2 < |t|∀ (δ : ), 0 < δ δ < 1|(logDerivZeta (1 + δ + 2 * t * Complex.I)).re - rho1.toFinset, ((analyticOrderAt riemannZeta rho1).toNat / (1 + δ + 2 * t * Complex.I - rho1)).re| C * Real.log (|2 * t| + 2)
      theorem lem_Realsum {α : Type u_1} (s : Finset α) (f : α) :
      (s.sum f).re = is, (f i).re
      theorem lem_sumrho1 (t δ : ) (hdelta_pos : δ > 0) (hdelta_lt1 : δ < 1) :
      (∑ rho1.toFinset, (analyticOrderAt riemannZeta rho1).toNat / (1 + δ + t * Complex.I - rho1)).re = rho1.toFinset, ((analyticOrderAt riemannZeta rho1).toNat / (1 + δ + t * Complex.I - rho1)).re
      theorem lem_sumrho2 (t delta : ) (hdelta : delta > 0) (hdelta_lt1 : delta < 1) :
      (∑ rho1.toFinset, (analyticOrderAt riemannZeta rho1).toNat / (1 + delta + 2 * t * Complex.I - rho1)).re = rho1.toFinset, ((analyticOrderAt riemannZeta rho1).toNat / (1 + delta + 2 * t * Complex.I - rho1)).re
      theorem lem_1deltatrho1 (delta : ) (_hdelta : delta > 0) (t : ) (rho1 : ) (_h_rho1_in_Zt : rho1 ZetaZerosNearPoint t) :
      1 + delta + t * Complex.I - rho1 = 1 + delta - rho1.re + (t - rho1.im) * Complex.I
      theorem lem_Re1deltatrho1 (delta : ) (hdelta : delta > 0) (t : ) (rho1 : ) (h_rho1_in_Zt : rho1 ZetaZerosNearPoint t) :
      (1 + delta + t * Complex.I - rho1).re = 1 + delta - rho1.re
      theorem lem_Re1delta1 (delta : ) (_hdelta : delta > 0) (t : ) (rho1 : ) (h_rho1_in_Zt : rho1 ZetaZerosNearPoint t) :
      1 + delta - rho1.re delta
      theorem lem_Re1deltatge (delta : ) (hdelta : delta > 0) (t : ) (rho1 : ) (h_rho1_in_Zt : rho1 ZetaZerosNearPoint t) :
      (1 + delta + t * Complex.I - rho1).re delta
      theorem lem_Re1deltatneq0 (delta : ) (hdelta : delta > 0) (t : ) (rho1 : ) (h_rho1_in_Zt : rho1 ZetaZerosNearPoint t) :
      (1 + delta + t * Complex.I - rho1).re > 0
      theorem lem_Re1deltatge0 (delta : ) (hdelta : delta > 0) (t : ) (rho1 : ) (h_rho1_in_Zt : rho1 ZetaZerosNearPoint t) :
      (1 / (1 + delta + t * Complex.I - rho1)).re 0
      theorem lem_Re1deltatge0m (delta : ) (hdelta : delta > 0) (t : ) (hdelta_lt_1 : delta < 1) (rho1 : ) (h_rho1_in_Zt : rho1 ZetaZerosNearPoint t) :
      ((analyticOrderAt riemannZeta rho1).toNat / (1 + delta + t * Complex.I - rho1)).re 0
      theorem lem_Re1delta2tge0 (delta : ) (hdelta : delta > 0) (hdelta_lt_1 : delta < 1) (t : ) (rho1 : ) (h_rho1_in_Zt : rho1 ZetaZerosNearPoint (2 * t)) :
      ((analyticOrderAt riemannZeta rho1).toNat / (1 + delta + 2 * t * Complex.I - rho1)).re 0
      theorem lem_sumrho2ge (t delta : ) (hdelta : delta > 0) (hdelta_lt_1 : delta < 1) :
      rho1.toFinset, ((analyticOrderAt riemannZeta rho1).toNat / (1 + delta + 2 * t * Complex.I - rho1)).re 0
      theorem lem_sumrho2ge02 (t delta : ) (hdelta : delta > 0) (hdelta_lt_1 : delta < 1) :
      (∑ rho1.toFinset, (analyticOrderAt riemannZeta rho1).toNat / (1 + delta + 2 * t * Complex.I - rho1)).re 0
      theorem lem_explicit2Real2 :
      C > 1, ∀ (t : ), 2 < |t|∀ (δ : ), 0 < δ δ < 1(-logDerivZeta (1 + δ + 2 * t * Complex.I)).re C * Real.log (|2 * t| + 2)
      theorem lem_log2Olog :
      (fun (t : ) => Real.log (2 * t)) =O[Filter.atTop] fun (t : ) => Real.log t
      theorem lem_w2t (t : ) :
      |2 * t| + 2 0
      theorem lem_log2Olog2 :
      (fun (t : ) => Real.log (|2 * t| + 4)) =O[Filter.atTopFilter.atBot] fun (t : ) => Real.log (|t| + 2)
      theorem lem_Z2bound :
      C > 1, ∀ (t : ), 2 < |t|∀ (δ : ), 0 < δ δ < 1(-logDerivZeta (1 + δ + 2 * t * Complex.I)).re C * Real.log (|t| + 2)
      theorem lem_Z1split (delta : ) (_hdelta : delta > 0) (hdelta : delta < 1) (rho : ) (_h_rho_in_zeroZ : rho zeroZ) (h_rho_in_Zt : rho ZetaZerosNearPoint rho.im) :
      rho1.toFinset, ((analyticOrderAt riemannZeta rho1).toNat / (1 + delta + rho.im * Complex.I - rho1)).re = ((analyticOrderAt riemannZeta rho).toNat / (1 + delta + rho.im * Complex.I - rho)).re + rho1.toFinset.erase rho, ((analyticOrderAt riemannZeta rho1).toNat / (1 + delta + rho.im * Complex.I - rho1)).re
      theorem re_ofReal_mul_eq (a : ) (z : ) :
      (a * z).re = a * z.re
      theorem re_ofReal_div_eq (a : ) (z : ) :
      (a / z).re = a * (1 / z).re
      theorem re_ofReal_div_ge_one (a : ) (z : ) (ha : 1 a) (hz : 0 (1 / z).re) :
      (a / z).re (1 / z).re
      theorem analyticOrderAt_pos_toNat_of_zero_of_analytic_not_eventually_zero {f : } {z0 : } (hf : AnalyticAt f z0) (hzero : f z0 = 0) (hnot : ¬∀ᶠ (z : ) in nhds z0, f z = 0) :
      theorem lem_Z1splitge (delta : ) (hdelta_pos : delta > 0) (hdelta : delta < 1) (rho : ) (h_rho_in_zeroZ : rho zeroZ) (h_rho_in_Zt : rho ZetaZerosNearPoint rho.im) :
      rho1.toFinset, ((analyticOrderAt riemannZeta rho1).toNat / (1 + delta + rho.im * Complex.I - rho1)).re (1 / (1 + delta + rho.im * Complex.I - rho)).re
      theorem lem_1deltatrho0 (delta : ) (_hdelta : delta > 0) (rho : ) (_h_rho_in_zeroZ : rho zeroZ) :
      1 + delta + rho.im * Complex.I - rho = 1 + delta - rho.re
      theorem lem_1delsigReal (delta : ) (hdelta_pos : delta > 0) (hdelta : delta < 1) (rho : ) (h_rho_in_zeroZ : rho zeroZ) :
      (1 / (1 + delta + rho.im * Complex.I - rho)).re = 1 / (1 + delta - rho.re)
      theorem lem_11delsiginR (delta : ) (hdelta : delta > 0) (hdelta_lt_1 : delta < 1) (sigma : ) (hsigma : sigma 1) :
      (1 / (1 + delta - sigma)).im = 0
      theorem lem_11delsiginR2 (delta : ) (hdelta : delta > 0) (hdelta_lt_1 : delta < 1) (rho : ) (h_rho_in_zeroZ : rho zeroZ) :
      (1 / (1 + delta - rho.re)).im = 0
      theorem lem_ReReal (x : ) :
      (↑x).re = x
      theorem lem_1delsigReal2 (delta : ) (_hdelta : delta > 0) (rho : ) (_h_rho_in_zeroZ : rho zeroZ) :
      (1 / (1 + delta - rho.re)).re = 1 / (1 + delta - rho.re)
      theorem lem_re_inv_one_plus_delta_minus_rho_real (delta : ) (hdelta : delta > 0) (rho : ) (h_rho_in_zeroZ : rho zeroZ) :
      (1 / (1 + delta + rho.im * Complex.I - rho)).re = 1 / (1 + delta - rho.re)
      theorem lem_Z1splitge2 (delta : ) (hdelta : delta > 0) (hdelta_lt_1 : delta < 1) (rho : ) (h_rho_in_zeroZ : rho zeroZ) (h_rho_in_Zt : rho ZetaZerosNearPoint rho.im) :
      rho1.toFinset, ((analyticOrderAt riemannZeta rho1).toNat / (1 + delta + rho.im * Complex.I - rho1)).re 1 / (1 + delta - rho.re)
      theorem lem_Z1splitge3 (delta : ) (hdelta : delta > 0) (hdelta_lt_1 : delta < 1) (sigma t : ) (rho : ) (h_rho_eq : rho = sigma + t * Complex.I) (h_rho_in_zeroZ : rho zeroZ) (h_rho_in_Zt : rho ZetaZerosNearPoint t) :
      (∑ rho1.toFinset, (analyticOrderAt riemannZeta rho1).toNat / (1 + delta + t * Complex.I - rho1)).re 1 / (1 + delta - sigma)
      theorem lem_rho_in_Zt (delta : ) (hdelta : delta > 0) (t : ) (h_rho_zero : 1 + delta + t * Complex.I zeroZ) :
      1 + delta + t * Complex.I ZetaZerosNearPoint t
      theorem Z1bound :
      C > 1, ∀ (delta : ), 0 < delta delta < 1∀ (t : ), 2 < |t|∀ (s : ), s zeroZ s.im = t(-logDerivZeta (1 + delta + t * Complex.I)).re -(1 / (1 + delta - s.re)) + C * Real.log (|t| + 2)
      theorem Z0boundRe :
      (fun (delta : ) => (-logDerivZeta (1 + delta)).re - 1 / delta) =O[nhdsWithin 0 (Set.Ioi 0)] fun (x : ) => 1
      theorem extract_bigO_bound_Z0 (delta : ) (_hdelta : delta > 0) :
      C0 > 0, (-logDerivZeta (1 + delta)).re 1 / delta + C0
      theorem uniform_bound_Z0 :
      δ0 > 0, C00, ∀ (δ : ), 0 < δδ < δ0(-logDerivZeta (1 + δ)).re 1 / δ + C0
      theorem eventually_atTop_sup_atBot_iff_abs {P : Prop} :
      (∀ᶠ (t : ) in Filter.atTopFilter.atBot, P t) ∃ (T : ), ∀ (t : ), T |t|P t
      theorem re_sum_three (a b : ) (x y z : ) :
      (a * x + b * y + z).re = a * x.re + b * y.re + z.re
      theorem log_abs_add_two_ge_one (t : ) (ht : Real.exp 1 - 2 |t|) :
      1 Real.log (|t| + 2)
      theorem re_ofReal_add_ofReal_add (a b : ) (z : ) :
      (a + b + z).re = a + b + z.re
      theorem algebraic_rewrite_RHS (δ s L C0 C1 C2 : ) :
      3 * (1 / δ + C0) + 4 * (-(1 / (1 + δ - s)) + C1 * L) + C2 * L = 3 / δ - 4 / (1 + δ - s) + (4 * C1 + C2) * L + 3 * C0
      theorem absorb_pos_constant_into_log {L A c : } (hL : 1 L) (hc : 0 c) :
      A * L + c (A + c) * L
      theorem zeta1zetaseries {s : } (hs : 1 < s.re) :
      theorem zeta1zetaseriesxy (x y : ) (hx : 1 < x) :
      -logDerivZeta (x + y * I) = ∑' (n : ), (ArithmeticFunction.vonMangoldt n) * n ^ (-(x + y * I))
      theorem Zconverges1 (x y : ) (hx : 1 < x) :
      riemannZeta (x + y * I) 0
      theorem complex_re_of_real_add_imag (x y : ) :
      (x + y * I).re = x
      theorem summable_of_support_singleton {α : Type u_1} [SeminormedAddCommGroup α] (f : α) (n₀ : ) (h : ∀ (n : ), n n₀f n = 0) :
      theorem summable_of_summable_add_sub {α : Type u_1} [SeminormedAddCommGroup α] (f g h : α) (h_eq : f = g + h) (hf : Summable f) (hh : Summable h) :
      theorem LSeriesSummable_to_summable (f : ) (s : ) (h : LSeriesSummable f s) :
      Summable fun (n : ) => f n * n ^ (-s)
      theorem ReZconverges1 (x y : ) (hx : 1 < x) :
      Summable fun (n : ) => ((ArithmeticFunction.vonMangoldt n) * (↑n).cpow (-(x + y * I))).re
      theorem exprule (n : ) (hn : n 1) (alpha beta : ) :
      n ^ (alpha + beta) = n ^ alpha * n ^ beta
      theorem lem_nxy (n : ) (hn : n 1) (x y : ) :
      (↑n).cpow (-(x + y * I)) = (↑n).cpow (-x) * (↑n).cpow (-(y * I))
      theorem lem_zeta1zetaseriesxy2 (x y : ) (hx : 1 < x) :
      -logDerivZeta (x + y * I) = ∑' (n : ), (ArithmeticFunction.vonMangoldt n) * (↑n).cpow (-x) * (↑n).cpow (-(y * I))
      theorem complex_add_re_ofReal_mul_I (x y : ) :
      (x + y * I).re = x
      theorem LSeriesSummable_to_explicit_summable (x y : ) (_hx : 1 < x) :
      LSeriesSummable (fun (n : ) => (ArithmeticFunction.vonMangoldt n)) (x + y * I)Summable fun (n : ) => (ArithmeticFunction.vonMangoldt n) * (↑n).cpow (-x) * (↑n).cpow (-(y * I))
      theorem Zseriesconverges1 (x y : ) (hx : 1 < x) :
      Summable fun (n : ) => (ArithmeticFunction.vonMangoldt n) * (↑n).cpow (-x) * (↑n).cpow (-(y * I))
      theorem lem_realnx (n : ) (x : ) (_hn : n 1) (_hx : x 1) :
      theorem sumReal {v : } {v_sum : } (h_sum : HasSum v v_sum) :
      HasSum (fun (n : ) => (v n).re) v_sum.re
      theorem sumRealLambda (x y : ) (hx : 1 < x) :
      (∑' (n : ), (ArithmeticFunction.vonMangoldt n) * (↑n).cpow (-x) * (↑n).cpow (-(y * I))).re = ∑' (n : ), ((ArithmeticFunction.vonMangoldt n) * (↑n).cpow (-x) * (↑n).cpow (-(y * I))).re
      theorem lem_sumRealZ (x y : ) (hx : 1 < x) :
      (-logDerivZeta (x + y * I)).re = ∑' (n : ), ((ArithmeticFunction.vonMangoldt n) * (↑n).cpow (-x) * (↑n).cpow (-(y * I))).re
      theorem complex_cpow_neg_real (n : ) (x : ) (_hn : n 1) :
      (↑n).cpow (-x) = ↑(n ^ (-x))
      theorem RealLambdaxy (n : ) (x y : ) (hn : n 1) (_hx : 1 < x) :
      ((ArithmeticFunction.vonMangoldt n) * (↑n).cpow (-x) * (↑n).cpow (-(y * I))).re = ArithmeticFunction.vonMangoldt n * n ^ (-x) * ((↑n).cpow (-(y * I))).re
      theorem ReZseriesRen (x y : ) (hx : 1 < x) :
      (-logDerivZeta (x + y * I)).re = ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-x) * ((↑n).cpow (-(y * I))).re
      theorem Rezeta1zetaseries (x y : ) (hx : 1 < x) :
      (-logDerivZeta (x + y * I)).re = ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-x) * Real.cos (y * Real.log n)
      theorem complex_vonMangoldt_real_part_eq (n : ) (x y : ) (hn : n 1) (hx : 1 < x) :
      ((ArithmeticFunction.vonMangoldt n) * (↑n).cpow (-(x + y * I))).re = ArithmeticFunction.vonMangoldt n * n ^ (-x) * Real.cos (y * Real.log n)
      theorem Rezetaseries_convergence (x y : ) (hx : 1 < x) :
      theorem Rezetaseries2t (x t : ) (hx : 1 < x) :
      Summable fun (n : ) => ArithmeticFunction.vonMangoldt n * n ^ (-x) * Real.cos (2 * t * Real.log n)
      theorem lem_cost0 (n : ) (_hn : n 1) (t : ) (ht : t = 0) :
      Real.cos (t * Real.log n) = 1
      theorem Rezetaseries0 (x : ) (hx : 1 < x) :
      theorem uniform_bound_Z0_complex :
      δ0 > 0, C00, ∀ (δ : ), 0 < δδ < δ0-logDerivZeta (1 + δ) - 1 / δ C0
      theorem cpow_neg_zero_I (z : ) :
      z ^ (-0 * Complex.I) = 1
      theorem tsum_nonneg_of_nonneg {f : } (hnon : ∀ (n : ), 0 f n) :
      0 ∑' (n : ), f n
      theorem cpow_neg_real_of_nat (n : ) (x : ) (hn : 1 n) :
      n ^ (-x) = ↑(n ^ (-x))
      theorem tsum_le_of_nonneg_of_le {f g : } (hf : Summable f) (hg : Summable g) (_hnonneg : ∀ (n : ), 0 f n) (hle : ∀ (n : ), f n g n) :
      ∑' (n : ), f n ∑' (n : ), g n
      theorem rpow_neg_antitone {a x y : } (ha : 1 a) (hxy : x y) :
      a ^ (-x) a ^ (-y)
      theorem bounded_on_compact_interval (a b : ) (h0 : 0 < a) (_hle : a b) :
      Cmid0, ∀ (δ : ), a δδ b-logDerivZeta (1 + δ) - 1 / δ Cmid
      theorem norm_one_div_coe_real_le_one_of_one_le {δ : } (h : 1 δ) :
      1 / δ 1
      theorem Z0bound_const :
      C > 1, δ > 0, -logDerivZeta (1 + δ) - 1 / δ C

      There exists a constant C > 0 such that for all δ > 0, ‖ -logDerivZeta (1 + δ) - 1/δ ‖ ≤ C.

      theorem Z0boundRe_const :
      C > 1, δ > 0, (-logDerivZeta (1 + δ) - 1 / δ).re C

      There exists a constant C > 0 such that for all δ > 0, Re(-logDerivZeta (1 + δ) - 1/δ) ≤ C.

      theorem Z0boundRe_const2 :
      C > 1, δ > 0, (-logDerivZeta (1 + δ)).re + (-(1 / δ)).re C

      There exists a constant C > 0 such that for all δ > 0, Re(-logDerivZeta (1 + δ)) + Re(- 1/δ) ≤ C.

      theorem Z0boundRe_const3 :
      C > 1, δ > 0, (-logDerivZeta (1 + δ)).re - 1 / δ C

      There exists a constant C > 0 such that for all δ > 0, Re(-logDerivZeta (1 + δ)) - 1/δ ≤ C.

      theorem Z341bounds_const :
      C > 1, δ > 0, δ < 1∀ (t : ), 2 < |t|∀ (σ : ), σ + t * Complex.I zeroZ3 * (-logDerivZeta (1 + δ)).re + 4 * (-logDerivZeta (1 + δ + t * Complex.I)).re + (-logDerivZeta (1 + δ + 2 * t * Complex.I)).re 3 / δ - 4 / (1 + δ - σ) + C * Real.log (|t| + 2)
      def ZeroAt (σ t : ) :
      Equations
      Instances For
        def Ft (σ : ) :
        Equations
        Instances For

          Filter on δ: approach 0⁺.

          Equations
          Instances For
            theorem Rezeta1zetaseries1 (t delta : ) (hdelta : delta > 0) :
            (-logDerivZeta (1 + delta + t * I)).re = ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * Real.cos (t * Real.log n)
            theorem Rezeta1zetaseries2 (t delta : ) (hdelta : delta > 0) :
            (-logDerivZeta (1 + delta + 2 * t * I)).re = ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * Real.cos (2 * t * Real.log n)
            theorem Rezeta1zetaseries0 (delta : ) (hdelta : delta > 0) :
            (-logDerivZeta (1 + delta)).re = ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta))
            theorem Z341series (t delta : ) (hdelta : delta > 0) :
            3 * (-logDerivZeta (1 + delta)).re + 4 * (-logDerivZeta (1 + delta + t * I)).re + (-logDerivZeta (1 + delta + 2 * t * I)).re = 3 * ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) + 4 * ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * Real.cos (t * Real.log n) + ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * Real.cos (2 * t * Real.log n)
            theorem lem341seriesConv (t delta : ) (hdelta : delta > 0) :
            Summable fun (n : ) => 3 * ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) + 4 * ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * Real.cos (t * Real.log n) + ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * Real.cos (2 * t * Real.log n)
            theorem lem341series (t delta : ) (hdelta : delta > 0) :
            3 * ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) + 4 * ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * Real.cos (t * Real.log n) + ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * Real.cos (2 * t * Real.log n) = ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * (3 + 4 * Real.cos (t * Real.log n) + Real.cos (2 * t * Real.log n))
            theorem lem_341seriesConverge (t delta : ) (hdelta : delta > 0) :
            Summable fun (n : ) => ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * (3 + 4 * Real.cos (t * Real.log n) + Real.cos (2 * t * Real.log n))
            theorem lem_341series2 (t delta : ) (hdelta : delta > 0) :
            3 * (-logDerivZeta (1 + delta)).re + 4 * (-logDerivZeta (1 + delta + t * I)).re + (-logDerivZeta (1 + delta + 2 * t * I)).re = ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * (3 + 4 * Real.cos (t * Real.log n) + Real.cos (2 * t * Real.log n))
            theorem lem_Lambda_pos_trig_sum (n : ) (delta t : ) (hn : n 1) (hdelta : delta > 0) :
            0 ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * (3 + 4 * Real.cos (t * Real.log n) + Real.cos (2 * t * Real.log n))
            theorem seriesPos {f : } (_h_summable : Summable fun (n : ) => if 1 n then f n else 0) (h_nonneg : ∀ (n : ), 1 n0 f n) :
            0 ∑' (n : ), if 1 n then f n else 0
            theorem lem_seriespos (t delta : ) (hdelta : delta > 0) :
            0 ∑' (n : ), ArithmeticFunction.vonMangoldt n * n ^ (-(1 + delta)) * (3 + 4 * Real.cos (t * Real.log n) + Real.cos (2 * t * Real.log n))
            theorem Z341pos (t delta : ) (hdelta : delta > 0) :
            0 3 * (-logDerivZeta (1 + delta)).re + 4 * (-logDerivZeta (1 + delta + t * I)).re + (-logDerivZeta (1 + delta + 2 * t * I)).re
            theorem frac_den_increase_bound {a b c : } (hpos : 0 < a + b) (hc : 0 c) :
            4 / (a + b + c) 4 / (a + b)
            theorem log_abs_add_two_pos (t : ) :
            0 < Real.log (|t| + 2)
            theorem log_gt_of_gt_exp {x y : } (h : Real.exp y < x) :
            theorem denom_rewrite (σ C L : ) :
            1 - σ + 1 / (2 * C * L) = 1 + 1 / (2 * C * L) - σ
            theorem pos_delta_from_C_L {C L : } (hC : 0 < C) (hL : 0 < L) :
            0 < 1 / (2 * C * L)
            theorem add_two_pos_of_abs (t : ) :
            0 < |t| + 2
            theorem log_abs_two_pos (t : ) :
            0 < Real.log (|t| + 2)
            theorem two_C_log_pos {C t : } (hC : 0 < C) :
            0 < 2 * C * Real.log (|t| + 2)
            theorem mul_one_div_self_of_pos {a : } (ha : 0 < a) :
            a * (1 / a) = 1
            theorem mul_one_div_mul_right {A b : } (hA : A 0) :
            A * (1 / (A * b)) = 1 / b
            theorem one_div_mul_one_div_mul_right {A b : } (hA : A 0) (_hb : b 0) :
            1 / (A * (1 / (A * b))) = b
            theorem inv_of_delta_def (C L δ : ) ( : δ = 1 / (2 * C * L)) :
            1 / δ = 2 * C * L
            theorem rhs_eval_of_inv (C L δ : ) (h : 1 / δ = 2 * C * L) :
            3 / δ + C * L = 7 * C * L
            theorem lem341tsC :
            C > 1, ∀ (s : ), s zeroZ 0 < s.re s.re < 12 < |s.im|4 / (1 - s.re + 1 / (2 * C * Real.log (|s.im| + 2))) 7 * C * Real.log (|s.im| + 2)
            theorem zeta_zero_re_lt_one (s : ) (hs : s zeroZ) :
            s.re < 1
            theorem div_le_to_le_mul (x y z : ) (hy : 0 < y) (h : x / y z) :
            x z * y
            theorem le_mul_to_le_div (x y z : ) (hy : 0 < y) (h : x z * y) :
            x / y z
            theorem reciprocal_div_inequality (a b : ) (ha : 0 < a) (hb : 0 < b) (h : 4 / a b) :
            a 4 / b
            theorem lem341tsC2 :
            C > 1, ∀ (s : ), s zeroZ 0 < s.re s.re < 12 < |s.im|1 - s.re + 1 / (2 * C * Real.log (|s.im| + 2)) 4 / (7 * C * Real.log (|s.im| + 2))
            theorem simplify_4_7_2 (C L : ) :
            4 / (7 * C * L) - 1 / (2 * C * L) = 1 / (14 * C * L)
            theorem fraction_diff_lower_bound (C L a : ) :
            4 / (7 * C * L) a + 1 / (2 * C * L) → 1 / (14 * C * L) a
            theorem lem341tsC3 :
            C > 1, ∀ (s : ), s zeroZ 0 < s.re s.re < 12 < |s.im|1 - s.re 1 / (14 * C * Real.log (|s.im| + 2))
            theorem zerofree :
            c > 0, c < 1 ∀ (s : ), s zeroZ 0 < s.re s.re < 12 < |s.im|s.re 1 - c / Real.log (|s.im| + 2)
            def Yt (t δ : ) :

            For $t\in\R$ and $\delta >0$, define $\mathcal{Y}_t(\delta) = \{\rho_1\in\C : \zeta(\rho_1) = 0 \,\text{and} \, |\rho_1-(1-\delta+it)|\le \delta/2\}.$

            Equations
            Instances For
              noncomputable def deltaz (z : ) :
              Equations
              Instances For
                noncomputable def deltaz_t (t : ) :
                Equations
                Instances For
                  theorem lem_delta19 :
                  (∀ (z : ), |z.im| > 20 < deltaz z deltaz z < 1 / 9) ∀ (t : ), |t| > 20 < deltaz_t t deltaz_t t < 1 / 9
                  theorem eventually_eq_zero_implies_frequently_eq_zero_punctured (f : ) (z₀ : ) :
                  (∀ᶠ (z : ) in nhds z₀, f z = 0)∃ᶠ (z : ) in nhdsWithin z₀ {z₀}, f z = 0
                  theorem lem_ZFRdelta (z : ) :
                  2 < |z.im|z.re > 1 - 9 * deltaz zriemannZeta z 0
                  theorem complex_re_add_I_mul_real (a t : ) :
                  (a + Complex.I * t).re = a
                  theorem complex_im_add_I_mul_real (a t : ) :
                  (a + Complex.I * t).im = t
                  theorem complex_sub_ofReal_I_real_eq_ofReal (z : ) (a t : ) (him : z.im = t) :
                  z - (a + Complex.I * t) = z.re - a
                  theorem lem_ZFRinD (t : ) (ht : |t| > 2) (z : ) :
                  let c := 3 / 2 + I * t; 1 - deltaz_t t z.re z.re 3 / 2 z.im = tz Metric.closedBall c (2 / 3)
                  theorem lem_ZFRnotK (t : ) (ht : |t| > 2) (z : ) :
                  let c := 3 / 2 + I * t; 1 - deltaz_t t z.re z.re 3 / 2 z.im = tzzerosetKfRc (5 / 6) c riemannZeta
                  theorem lem_Zeta_Expansion_ZFR :
                  C_1 > 1, ∀ (t : ), |t| > 3let c := 3 / 2 + I * t; ∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite) (z : ), 1 - deltaz_t t z.re z.re 3 / 2 z.im = tderiv riemannZeta z / riemannZeta z - ρhfin.toFinset, (analyticOrderAt riemannZeta ρ).toNat / (z - ρ) C_1 * Real.log |t|
                  theorem lem_abszrhoReRe (z ρ : ) :
                  z - ρ z.re - ρ.re
                  theorem lem_Rerhotodeltarho {ρ : } (t : ) :
                  |t| > 3ρ zerosetKfRc (5 / 6) (3 / 2 + t * Complex.I) riemannZetaρ.re 1 - 9 * deltaz ρ
                  theorem lem_DImt2d (t : ) :
                  |t| > 3zMetric.closedBall (3 / 2 + t * Complex.I) (5 / 6), |z.im| |t| + 5 / 6
                  theorem lem_DIMt2 (t : ) :
                  |t| > 3zMetric.closedBall (3 / 2 + t * Complex.I) (5 / 6), |z.im| + 2 (|t| + 2) ^ 3
                  theorem lem_DlogImlog (t : ) :
                  |t| > 3zMetric.closedBall (3 / 2 + t * Complex.I) (5 / 6), Real.log (|z.im| + 2) 3 * Real.log (|t| + 2)
                  theorem lem_D1logtlog (t : ) :
                  |t| > 3zMetric.closedBall (3 / 2 + t * Complex.I) (5 / 6), 1 / Real.log (|t| + 2) 3 / Real.log (|z.im| + 2)
                  theorem lem_Ddt2dz (t : ) :
                  |t| > 3zMetric.closedBall (3 / 2 + t * Complex.I) (5 / 6), deltaz_t t 3 * deltaz z
                  theorem lem_deltarhotodeltat (t : ) (ht : |t| > 3) (ρ : ) :
                  let c := 3 / 2 + I * t; ρ zerosetKfRc (5 / 6) c riemannZetadeltaz ρ 1 / 3 * deltaz_t t
                  theorem lem_Rerhotodeltat (t : ) (ht : |t| > 3) (ρ : ) :
                  let c := 3 / 2 + I * t; ρ zerosetKfRc (5 / 6) c riemannZetaρ.re 1 - 3 * deltaz_t t
                  theorem lem_RezRerho (t : ) (ht : |t| > 3) (z ρ : ) :
                  let c := 3 / 2 + I * t; ρ zerosetKfRc (5 / 6) c riemannZeta1 - deltaz_t t z.re z.re 3 / 2 z.im = tz.re - ρ.re 2 * deltaz_t t
                  theorem lem_abszrhodelta (t : ) (ht : |t| > 3) (z ρ : ) :
                  let c := 3 / 2 + I * t; ρ zerosetKfRc (5 / 6) c riemannZeta1 - deltaz_t t z.re z.re 3 / 2 z.im = tz - ρ 2 * deltaz_t t
                  theorem lem_abszrhodeltanot0 (t : ) (ht : |t| > 3) (z ρ : ) :
                  let c := 3 / 2 + I * t; ρ zerosetKfRc (5 / 6) c riemannZeta1 - deltaz_t t z.re z.re 3 / 2 z.im = tz - ρ > 0
                  theorem lem_1abszrho (t : ) (ht : |t| > 3) (z ρ : ) :
                  let c := 3 / 2 + I * t; ρ zerosetKfRc (5 / 6) c riemannZeta1 - deltaz_t t z.re z.re 3 / 2 z.im = t1 / z - ρ 1 / (2 * deltaz_t t)
                  theorem lem_m_rho_zeta_nat (t : ) (ht : |t| > 3) (ρ : ) :
                  let c := 3 / 2 + I * t; ρ zerosetKfRc (5 / 6) c riemannZeta∃ (n : ), analyticOrderAt riemannZeta ρ = n
                  theorem lem_finiteKzeta (t : ) (ht : |t| > 3) :
                  let c := 3 / 2 + I * t; (zerosetKfRc (5 / 6) c riemannZeta).Finite
                  theorem lem_triangle_ZFR (t : ) (ht : |t| > 3) (z : ) :
                  let c := 3 / 2 + I * t; ∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite), 1 - deltaz_t t z.re z.re 3 / 2 z.im = tρhfin.toFinset, (analyticOrderAt riemannZeta ρ).toNat / (z - ρ) ρhfin.toFinset, (analyticOrderAt riemannZeta ρ).toNat / z - ρ
                  theorem lem_Zeta_Triangle_ZFR :
                  C_1 > 1, ∀ (t : ), |t| > 3let c := 3 / 2 + I * t; ∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite) (z : ), 1 - deltaz_t t z.re z.re 3 / 2 z.im = tderiv riemannZeta z / riemannZeta z ρhfin.toFinset, (analyticOrderAt riemannZeta ρ).toNat / (z - ρ) + C_1 * Real.log |t|
                  theorem lem_sumK1abs (t : ) (ht : |t| > 3) (z : ) :
                  let c := 3 / 2 + I * t; ∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite), 1 - deltaz_t t z.re z.re 3 / 2 z.im = tρhfin.toFinset, (analyticOrderAt riemannZeta ρ).toNat / z - ρ 1 / (2 * deltaz_t t) * ρhfin.toFinset, (analyticOrderAt riemannZeta ρ).toNat
                  theorem helper_analyticOnNhd_shift_div (f : ) (c : ) (h : zMetric.closedBall c 1, AnalyticAt f z) (hc : f c 0) :
                  AnalyticOnNhd (fun (z : ) => f (z + c) / f c) (Metric.closedBall 0 1)
                  theorem helper_finite_zeros_shift (r : ) (hr : r > 0) (c : ) (f : ) (hc : f c 0) (h_analytic : AnalyticOnNhd f (Metric.closedBall c 1)) (hfin : (zerosetKfRc r c f).Finite) :
                  (zerosetKfRc r 0 fun (z : ) => f (z + c) / f c).Finite
                  theorem helper_bound_shifted (B R : ) (hB : 1 < B) (hRpos : 0 < R) (hRlt1 : R < 1) (c : ) (f : ) (hc : f c 0) (h_bound : zMetric.closedBall c R, f z B) (z : ) :
                  z Metric.closedBall 0 R(fun (w : ) => f (w + c) / f c) z B / f c
                  theorem helper_g_zero_eq_one (f : ) (c : ) (hc : f c 0) :
                  (fun (z : ) => f (z + c) / f c) 0 = 1
                  theorem helper_zerosetKfR_eq_center0 (r : ) (hr : r > 0) (f : ) :
                  zerosetKfR r hr f = zerosetKfRc r 0 f
                  theorem helper_sum_nonneg_nat (ι : Type u_1) (s : Finset ι) (f : ι) :
                  0 is, (f i)
                  theorem helper_one_le_Bdivfc2 (B R : ) (hB : 1 < B) (hRpos : 0 < R) (hRlt1 : R < 1) (f : ) (c : ) (hc : f c 0) (h_bound : zMetric.closedBall c R, f z B) :
                  1 B / f c
                  theorem helper_sum_over_equal_finite_sets {α : Type u_1} (S T : Set α) (hS : S.Finite) (hT : T.Finite) (hST : S = T) (φ : α) :
                  xhS.toFinset, φ x = xhT.toFinset, φ x
                  theorem helper_apply_jensen_to_g (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (g : ) (h_g_analytic : zMetric.closedBall 0 1, AnalyticAt g z) (hg0_ne : g 0 0) (hg0_one : g 0 = 1) (hfin_g : (zerosetKfR R1 g).Finite) (hg_le_B : ∀ (z : ), z Rg z B) :
                  ρhfin_g.toFinset, (analyticOrderAt g ρ).toNat Real.log B / Real.log (R / R1)
                  theorem helper_sum_f_equals_sum_g (r : ) (hr : r > 0) (c : ) (f : ) (hc : f c 0) (h_analytic : AnalyticOnNhd f (Metric.closedBall c 1)) (hfin : (zerosetKfRc r c f).Finite) :
                  ρhfin.toFinset, (analyticOrderAt f ρ).toNat = ρ'.toFinset, (analyticOrderAt (fun (z : ) => f (z + c) / f c) ρ').toNat
                  theorem helper_zero_set_shift_eq (r : ) (hr : r > 0) (c : ) (f : ) (hc : f c 0) (h_analytic : AnalyticOnNhd f (Metric.closedBall c 1)) :
                  (zerosetKfRc r 0 fun (z : ) => f (z + c) / f c) = (fun (ρ : ) => ρ - c) '' zerosetKfRc r c f
                  theorem helper_fin_zero_g_is_image (r : ) (hr : r > 0) (c : ) (f : ) (hc : f c 0) (h_analytic : AnalyticOnNhd f (Metric.closedBall c 1)) (hfin : (zerosetKfRc r c f).Finite) :
                  (zerosetKfRc r 0 fun (z : ) => f (z + c) / f c).Finite
                  theorem helper_AnalyticOnNhd_to_pointwise {S : Set } {f : } (h : AnalyticOnNhd f S) (z : ) :
                  z SAnalyticAt f z
                  theorem jensen_sum_bound_strict (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (g : ) (h_g_analytic : zMetric.closedBall 0 1, AnalyticAt g z) (hg0_ne : g 0 0) (hg0_one : g 0 = 1) (hfin_g : (zerosetKfR R1 g).Finite) (hg_le_B : ∀ (z : ), z Rg z B) :
                  ρhfin_g.toFinset, (analyticOrderAt g ρ).toNat Real.log B / Real.log (R / R1)
                  theorem no_zero_of_bound_one_and_center_one (R : ) (hR_lt_1 : R < 1) (g : ) (h_g_analytic : zMetric.closedBall 0 1, AnalyticAt g z) (hg0_one : g 0 = 1) (hg_le_one : ∀ (z : ), z Rg z 1) (z : ) :
                  z Metric.closedBall 0 Rg z 0
                  theorem helper_sum_over_equal_finite_sets_orders {S T : Set } (g : ) (hS : S.Finite) (hT : T.Finite) (hST : S = T) :
                  xhS.toFinset, (analyticOrderAt g x).toNat = xhT.toFinset, (analyticOrderAt g x).toNat
                  theorem helper_bound_on_ball_to_norm_imp {R : } {g : } {M : } (hg : zMetric.closedBall 0 R, g z M) (z : ) :
                  z Rg z M
                  theorem helper_pointwise_to_AnalyticOnNhd {S : Set } {f : } (h : zS, AnalyticAt f z) :
                  theorem lem_sum_m_rho_bound_c (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (c : ) (h_f_analytic : zMetric.closedBall c 1, AnalyticAt f z) (h_f_nonzero_at_zero : f c 0) (hf_le_B : zMetric.closedBall c R, f z B) (hfin : (zerosetKfRc R1 c f).Finite) :
                  ρhfin.toFinset, (analyticOrderAt f ρ).toNat Real.log (B / f c) / Real.log (R / R1)
                  theorem lem_sum_m_rho_zeta :
                  C_2 > 1, ∀ (t : ), |t| > 3let c := 3 / 2 + I * t; ∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite), ρhfin.toFinset, (analyticOrderAt riemannZeta ρ).toNat C_2 * Real.log |t|
                  theorem lem_sumKdeltatlogt :
                  C_3 > 1, ∀ (t : ), |t| > 3let c := 3 / 2 + I * t; ∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite) (z : ), 1 - deltaz_t t z.re z.re 3 / 2 z.im = tρhfin.toFinset, (analyticOrderAt riemannZeta ρ).toNat / z - ρ C_3 / deltaz_t t * Real.log |t|
                  theorem lem_sumKlogt2 :
                  C_4 > 1, ∀ (t : ), |t| > 3let c := 3 / 2 + I * t; ∀ (hfin : (zerosetKfRc (5 / 6) c riemannZeta).Finite) (z : ), 1 - deltaz_t t z.re z.re 3 / 2 z.im = tρhfin.toFinset, (analyticOrderAt riemannZeta ρ).toNat / z - ρ C_4 * Real.log |t| ^ 2
                  theorem lem_logDerivZetalogt0 :
                  C > 1, ∀ (t : ), |t| > 3∀ (s : ), 1 - deltaz_t t s.re s.re 3 / 2 s.im = tderiv riemannZeta s / riemannZeta s C * Real.log |t| ^ 2
                  theorem lem_logDerivZetalogt2 :
                  A > 0, A < 1 C > 1, ∀ (t : ), |t| > 3∀ (s : ), 1 - A / Real.log (|t| + 2) s.re s.re 3 / 2 s.im = tderiv riemannZeta s / riemannZeta s C * Real.log |t| ^ 2
                  theorem lem_rhoDRe4 (t : ) (z : ) :
                  z Metric.closedBall (1 - (deltaz_t t) + t * Complex.I) (2 * deltaz_t t)z.re > 1 - 4 * deltaz_t t
                  theorem helper_absIm_le_add_smallball (t : ) (z : ) (hz : z Metric.closedBall (1 - (deltaz_t t) + t * Complex.I) (2 * deltaz_t t)) :
                  theorem helper_log_le_two_log_smallball (t : ) (ht : |t| > 3) (z : ) (hz : z Metric.closedBall (1 - (deltaz_t t) + t * Complex.I) (2 * deltaz_t t)) :
                  Real.log (|z.im| + 2) 2 * Real.log (|t| + 2)
                  theorem helper_one_div_log_le_two_div_smallball (t : ) (ht : |t| > 3) (z : ) (hz : z Metric.closedBall (1 - (deltaz_t t) + t * Complex.I) (2 * deltaz_t t)) :
                  1 / Real.log (|t| + 2) 2 / Real.log (|z.im| + 2)
                  theorem helper_deltaz_t_le_two_deltaz_smallball (t : ) (ht : |t| > 3) (z : ) (hz : z Metric.closedBall (1 - (deltaz_t t) + t * Complex.I) (2 * deltaz_t t)) :
                  theorem lem_DRez6dz (t : ) :
                  |t| > 3zMetric.closedBall (1 - (deltaz_t t) + t * Complex.I) (2 * deltaz_t t), z.re 1 - 6 * deltaz z
                  theorem lem_YinD (t : ) :
                  |t| > 3Yt t (deltaz_t t) Metric.closedBall (1 - (deltaz_t t) + t * Complex.I) (2 * deltaz_t t)
                  theorem lem_rhoYzero (t δ : ) (ρ_1 : ) (h_rho_1_in_Yt : ρ_1 Yt t δ) :
                  riemannZeta ρ_1 = 0
                  theorem lem_zRe (t δ : ) (z : ) :
                  |(z - (1 - δ + t * Complex.I)).re| z - (1 - δ + t * Complex.I)
                  theorem lem_zRe2 (t δ : ) (z : ) (h_le : z - (1 - δ + t * Complex.I) 2 * δ) :
                  |(z - (1 - δ + t * Complex.I)).re| 2 * δ
                  theorem lem_Rezit (t δ : ) (z : ) :
                  (z - (1 - δ + t * Complex.I)).re = z.re - (1 - δ)
                  theorem lem_zRe3 (t δ : ) (z : ) (h_le : z - (1 - δ + t * Complex.I) 2 * δ) :
                  |z.re - (1 - δ)| 2 * δ
                  theorem lem_negleabs (a b : ) (h_abs : |a| b) :
                  a -b

                  Let $a\in\R$ and $b>0$. If $|a|\le b$ then $a\ge -b$.

                  theorem lem_absrez1d (δ : ) (z : ) (h_le : |z.re - (1 - δ)| 2 * δ) :
                  z.re - (1 - δ) -(2 * δ)

                  Let $\delta >0$ and $z\in \C$. If $|\Re(z)-(1-\delta)| \le \delta/2$ then $\Re(z)-(1-\delta) \ge -\delta/2$

                  theorem lem_absrez1d2 (δ : ) (z : ) (h_le : |z.re - (1 - δ)| 2 * δ) :
                  z.re 1 - 3 * δ

                  Let $\delta >0$ and $z\in \C$. If $|\Re(z)-(1-\delta)| \le \delta/2$ then $\Re(z) \ge 1-\frac{3}{2}\delta$

                  theorem lem_absrez1d3 (δ : ) (z : ) ( : δ > 0) (h_le : |z.re - (1 - δ)| 2 * δ) :
                  z.re > 1 - 4 * δ
                  theorem lem_zRe4 (t δ : ) ( : δ > 0) (z : ) (h_le : z - (1 - δ + t * Complex.I) 2 * δ) :
                  z.re > 1 - 4 * δ
                  theorem lem_Imzit (t δ : ) (z : ) :
                  (z - (1 - δ + t * Complex.I)).im = z.im - t
                  theorem lem_zIm2 (t δ : ) (z : ) (h_le : z - (1 - δ + t * Complex.I) 2 * δ) :
                  |(z - (1 - δ + t * Complex.I)).im| 2 * δ
                  theorem lem_zIm3 (t δ : ) (z : ) (h_le : z - (1 - δ + t * Complex.I) 2 * δ) :
                  |z.im - t| 2 * δ
                  theorem abs_le_add_of_abs_sub_le {a b ε : } (h : |a - b| ε) :
                  |a| |b| + ε
                  theorem log_add_lt_log_add_div {x y : } (hx : 0 < x) (hy : 0 < y) :
                  Real.log (x + y) < Real.log x + y / x
                  theorem abs_le_add_of_abs_sub_le' {a b ε : } (h : |a - b| ε) :
                  |a| |b| + ε
                  theorem delta_half_eq (c t : ) :
                  c / 2 / Real.log (|t| + 2) / 2 = c / 4 / Real.log (|t| + 2)
                  theorem log_abs_im_le (t t1 δ : ) (h : |t1 - t| δ) :
                  Real.log (|t1| + 2) Real.log (|t| + 2) + δ / (|t| + 2)
                  theorem combine_re_bounds_to_c_over_log_le {ρre c δ L1 : } (h_ge : ρre 1 - 3 / 2 * δ) (h_le : ρre 1 - c / L1) :
                  c / L1 3 / 2 * δ
                  theorem core_contradiction2 {L t c δ : } (hLpos : 0 < L) (hpos : 0 < |t| + 2) ( : δ = c / 2 / L) (h : L 3 / 2 * δ / (|t| + 2)) :
                  L ^ 2 * (|t| + 2) 3 * c / 4
                  theorem abs_lower_bound_sub (x y : ) :
                  |x| |y| - |x - y|
                  theorem abs_im_ge_T0_from_close {t : } {ρ : } {δ T0 : } (hclose : |ρ.im - t| 2 * δ) (hineq : |t| - 2 * δ T0) :
                  T0 |ρ.im|
                  theorem lem_Kzetaempty (t : ) :
                  |t| > 3Yt t (deltaz_t t) =
                  theorem Yt_subset_closedBall (t δ : ) :
                  Yt t δ Metric.closedBall (1 - δ + t * Complex.I) (2 * δ)
                  theorem Yt_finite (t δ : ) :
                  (Yt t δ).Finite
                  theorem lem_sumempty (g : ) :
                  s, g s = 0

                  For any $g:\C\to\C$, if $S=\emptyset$ then $\sum_{s\in S}g(s) = 0$

                  theorem lem_Ksumempty (t : ) :
                  |t| > 3ρ_1.toFinset, (analyticOrderAt riemannZeta ρ_1).toNat / (1 - (deltaz_t t) + t * Complex.I - ρ_1) = 0
                  theorem lem_norm_cpow_nat (n : ) (s : ) (hn : 1 n) :
                  n ^ s = n ^ s.re
                  theorem lem_term_real_nonneg (n : ) (σ : ) ( : 1 < σ) :
                  r0, (ArithmeticFunction.vonMangoldt n) / n ^ σ = r
                  theorem lem_tsum_norm_vonMangoldt_depends_on_Re (s : ) (σ : ) ( : σ = s.re) (hs : 1 < s.re) :
                  theorem helper_LSeries_vonMangoldt_tsum (σ : ) ( : 1 < σ) :
                  theorem summable_ofReal_iff {f : } :
                  (Summable fun (n : ) => (f n)) Summable f
                  theorem helper_summable_of_summable_norm {u : } (h : Summable fun (n : ) => u n) :
                  theorem helper_norm_tsum_eq_tsum_norm_of_nonneg_real {u : } {r : } (h : ∀ (n : ), u n = (r n)) (hr : ∀ (n : ), 0 r n) (hu : Summable u) :
                  ∑' (n : ), u n = ∑' (n : ), u n
                  theorem lem_tsum_norm_vonMangoldt_depends_on_Re_cast (s : ) (σ : ) ( : σ = s.re) (hs : 1 < s.re) :
                  theorem lem_zetacenterbd (t σ : ) :
                  σ 3 / 2deriv riemannZeta { re := σ, im := t } / riemannZeta { re := σ, im := t } deriv riemannZeta σ / riemannZeta σ
                  theorem lem_logDerivZetalogt32 :
                  C > 1, ∀ (t : ), |t| > 3σ3 / 2, deriv riemannZeta { re := σ, im := t } / riemannZeta { re := σ, im := t } C
                  theorem thm_final_result :
                  A > 0, A < 1 C > 1, ∀ (t : ), |t| > 3σ1 - A / Real.log (|t| + 2), deriv riemannZeta { re := σ, im := t } / riemannZeta { re := σ, im := t } C * Real.log |t| ^ 2
                  theorem ZetaZeroFree_p :
                  ∃ (A : ) (_ : A Set.Ioc 0 (1 / 2)), ∀ (σ t : ), 3 < |t|σ Set.Ico (1 - A / Real.log |t| ^ 1) 1riemannZeta (σ + t * Complex.I) 0
                  theorem LogDerivZetaBndUnif2 :
                  ∃ (A : ) (_ : A Set.Ioc 0 (1 / 2)) (C : ) (_ : 0 < C), ∀ (σ t : ), 3 < |t|σ Set.Ici (1 - A / Real.log |t| ^ 1)deriv riemannZeta (σ + t * Complex.I) / riemannZeta (σ + t * Complex.I) C * Real.log |t| ^ 2