Documentation

StrongPNT.PNT2_LogDerivative

theorem DRinD1 (R : ) (hR : 0 < R) (hR' : R < 1) :
def zerosetKfR (R : ) (hR : 0 < R) (f : ) :
Equations
Instances For
    theorem lemKinDR (R : ) (hR : 0 < R) (f : ) :
    theorem lemKRinK1 (R : ) (hR : 0 < R) (hR' : R < 1) (f : ) :
    zerosetKfR R hR f {ρ : | ρ Metric.ball 0 1 f ρ = 0}
    theorem lem_bolzano_weierstrass {D : Set } (hD : IsCompact D) {Z : Set } (hZ_inf : Z.Infinite) (hZ_sub_D : Z D) :
    ρ₀D, AccPt ρ₀ (Filter.principal Z)
    theorem lem_zeros_have_limit_point (R : ) (hR : 0 < R) (f : ) (h_Kf_inf : (zerosetKfR R hR f).Infinite) :
    ρ₀Metric.closedBall 0 R, AccPt ρ₀ (Filter.principal (zerosetKfR R hR f))
    theorem lem_identity_theorem (f : ) (hf : AnalyticOnNhd f (Metric.closedBall 0 1)) (ρ₀ : ) (hρ₀_in_D1 : ρ₀ Metric.ball 0 1) (h_acc : AccPt ρ₀ (Filter.principal {ρ : | ρ Metric.ball 0 1 f ρ = 0})) :
    theorem lem_identity_theoremR (R : ) (hR : 0 < R) (hR' : R < 1) (f : ) (hf : AnalyticOnNhd f (Metric.closedBall 0 1)) (ρ₀ : ) (hρ₀_in_DR : ρ₀ Metric.closedBall 0 R) (h_acc : AccPt ρ₀ (Filter.principal {ρ : | ρ Metric.ball 0 1 f ρ = 0})) :
    theorem lem_identity_theoremKR (R : ) (hR : 0 < R) (hR' : R < 1) (f : ) (hf : AnalyticOnNhd f (Metric.closedBall 0 1)) (h_exists_rho0 : ρ₀Metric.closedBall 0 R, AccPt ρ₀ (Filter.principal (zerosetKfR R hR f))) :
    theorem lem_identity_infiniteKR (R : ) (hR : 0 < R) (hR' : R < 1) (f : ) (hf : AnalyticOnNhd f (Metric.closedBall 0 1)) (h_Kf_inf : (zerosetKfR R hR f).Infinite) :
    theorem lem_Contra_finiteKR (R : ) (hR : 0 < R) (hR' : R < 1) (f : ) (hf : AnalyticOnNhd f (Metric.closedBall 0 1)) (h_exists_nonzero : zMetric.ball 0 1, f z 0) :
    theorem lem_frho_zero (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) :
    f ρ = 0
    theorem lem_m_rho_is_nat (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (hR_lt_1 : R < 1) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) :
    theorem analyticOrderAt_ge_one_of_zero (f : ) (z : ) (hf : AnalyticAt f z) (hz : f z = 0) (hfinite : analyticOrderAt f z ) :
    theorem lem_m_rho_ge_1 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (hR_lt_1 : R < 1) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) :

    The quotient Cf (no core wrapper) #

    noncomputable def Cf (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (z : ) :

    The “deflated” quotient: divide f by the product of (z-ρ)^{m_ρ}, and at a zero z=σ use the local factor function h_σ σ in the numerator (so the expression extends analytically).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Helper lemmas used by the Cf proofs (statements only) #

      theorem lem_analDiv (R : ) (hR_pos : 0 < R) (hR_lt_1 : R < 1) (w : ) (hw : w Metric.closedBall 0 R) (h g : ) (hh : AnalyticAt h w) (hg : AnalyticAt g w) (hg_ne : g w 0) :
      AnalyticAt (fun (z : ) => h z / g z) w
      theorem lem_denomAnalAt (S : Finset ) (n : ) (hn_pos : sS, 0 < n s) (w : ) (hw : wS) :
      AnalyticAt (fun (z : ) => sS, (z - s) ^ n s) w sS, (w - s) ^ n s 0
      theorem lem_ratioAnalAt (w : ) (R R1 : ) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h : ) (hh : AnalyticAt h w) (S : Finset ) (hS : S Metric.closedBall 0 R1) (n : ) (hn_pos : sS, 0 < n s) (hw : w Metric.closedBall 0 1 \ S) :
      AnalyticAt (fun (z : ) => h z / sS, (z - s) ^ n s) w
      theorem lem_analytic_zero_factor (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (σ : ) ( : σ zerosetKfR R1 f) :
      ∃ (h_σ : ), AnalyticAt h_σ σ h_σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ z

      Cf lemmas (renamed to use Cf directly) #

      theorem lem_Cf_analytic_off_K {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) (hz : z Metric.closedBall 0 R \ zerosetKfR R1 f) :
      AnalyticAt (Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ) z
      theorem lem_Cf_at_sigma_onK {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (σ : ) ( : σ zerosetKfR R1 f) :
      ∀ᶠ (z : ) in nhds σ, z = σCf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = h_σ z z / ρh_finite_zeros.toFinset.erase σ, (z - ρ) ^ (analyticOrderAt f ρ).toNat
      theorem lem_K_isolated {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (σ ρ : ) ( : σ zerosetKfR R1 f) ( : ρ zerosetKfR R1 f) (hne : σ ρ) :
      ∀ᶠ (z : ) in nhds σ, z ρ
      theorem lem_Cf_at_sigma_offK0 {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (σ : ) ( : σ zerosetKfR R1 f) :
      ∀ᶠ (z : ) in nhds σ, z σCf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z / ρh_finite_zeros.toFinset, (z - ρ) ^ (analyticOrderAt f ρ).toNat
      theorem lem_prod_no_sigma1 {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (σ : ) ( : σ zerosetKfR R1 f) (z : ) :
      ρh_finite_zeros.toFinset, (z - ρ) ^ (analyticOrderAt f ρ).toNat = (z - σ) ^ (analyticOrderAt f σ).toNat * ρh_finite_zeros.toFinset.erase σ, (z - ρ) ^ (analyticOrderAt f ρ).toNat
      theorem lem_prod_no_sigma2 {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (σ : ) ( : σ zerosetKfR R1 f) (z : ) (hz : zzerosetKfR R1 f) :
      (z - σ) ^ (analyticOrderAt f σ).toNat / ρh_finite_zeros.toFinset, (z - ρ) ^ (analyticOrderAt f ρ).toNat = 1 / ρh_finite_zeros.toFinset.erase σ, (z - ρ) ^ (analyticOrderAt f ρ).toNat
      theorem lem_Cf_at_sigma_offK {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (σ : ) ( : σ zerosetKfR R1 f) :
      ∀ᶠ (z : ) in nhds σ, z σCf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = h_σ σ z / ρh_finite_zeros.toFinset.erase σ, (z - ρ) ^ (analyticOrderAt f ρ).toNat
      theorem lem_Cf_at_sigma {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (σ : ) ( : σ zerosetKfR R1 f) :
      ∀ᶠ (z : ) in nhds σ, Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = h_σ σ z / ρh_finite_zeros.toFinset.erase σ, (z - ρ) ^ (analyticOrderAt f ρ).toNat
      theorem lem_h_ratio_anal {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (σ : ) ( : σ zerosetKfR R1 f) (g : ) (hg_analytic : AnalyticAt g σ) :
      AnalyticAt (fun (z : ) => g z / ρh_finite_zeros.toFinset.erase σ, (z - ρ) ^ (analyticOrderAt f ρ).toNat) σ
      theorem lem_Cf_analytic_at_K {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (σ : ) ( : σ zerosetKfR R1 f) :
      AnalyticAt (Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ) σ
      theorem lem_Cf_is_analytic {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) (hz : z Metric.closedBall 0 R) :
      AnalyticAt (Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ) z
      theorem lem_f_nonzero_off_K {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (z : ) (hz : z Metric.closedBall 0 R1 \ zerosetKfR R1 f) :
      f z 0
      theorem lem_Cf_nonzero_off_K {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) (hz : z Metric.closedBall 0 R1 \ zerosetKfR R1 f) :
      Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z 0
      theorem lem_Cf_nonzero_on_K {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (σ : ) ( : σ zerosetKfR R1 f) :
      Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ σ 0
      theorem lem_Cf_never_zero {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) (hz : z Metric.closedBall 0 R1) :
      Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z 0
      theorem factor_nonzero_outside_domain (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (ρ : ) (hρ_bound : ρ R1) (hρ_ne_zero : ρ 0) (z : ) (hz_in_R1 : z R1) :
      R - star ρ * z / R 0
      theorem linear_pow_analytic (a b : ) (n : ) (z : ) :
      AnalyticAt (fun (w : ) => (a - b * w) ^ n) z
      theorem bl_num_diff {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) (hz : z Metric.closedBall 0 R) :
      DifferentiableAt (fun (w : ) => ρh_finite_zeros.toFinset, (R - star ρ * w / R) ^ (analyticOrderAt f ρ).toNat) z
      theorem lem_bl_num_nonzero {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) (hz : z Metric.closedBall 0 R1 \ zerosetKfR R1 f) :
      ρh_finite_zeros.toFinset, (R - star ρ * z / R) ^ (analyticOrderAt f ρ).toNat 0
      noncomputable def Bf (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (z : ) :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem lem_BfCf {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (z : ) (hz : z Metric.closedBall 0 R \ zerosetKfR R1 f) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = (f z * ρh_finite_zeros.toFinset, (R - star ρ * z / R) ^ (analyticOrderAt f ρ).toNat) / ρh_finite_zeros.toFinset, (z - ρ) ^ (analyticOrderAt f ρ).toNat
        theorem lem_Bf_div {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) (hz : z Metric.closedBall 0 R \ zerosetKfR R1 f) :
        (∏ ρh_finite_zeros.toFinset, (R - star ρ * z / R) ^ (analyticOrderAt f ρ).toNat) / ρh_finite_zeros.toFinset, (z - ρ) ^ (analyticOrderAt f ρ).toNat = ρh_finite_zeros.toFinset, (R - star ρ * z / R) ^ (analyticOrderAt f ρ).toNat / (z - ρ) ^ (analyticOrderAt f ρ).toNat
        theorem lem_Bf_prodpow {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) (hz : z Metric.closedBall 0 R \ zerosetKfR R1 f) :
        ρh_finite_zeros.toFinset, (R - star ρ * z / R) ^ (analyticOrderAt f ρ).toNat / (z - ρ) ^ (analyticOrderAt f ρ).toNat = ρh_finite_zeros.toFinset, ((R - star ρ * z / R) / (z - ρ)) ^ (analyticOrderAt f ρ).toNat
        theorem lem_Bf_off_K {R R1 : } {hR1_pos : 0 < R1} {hR1_lt_R : R1 < R} {hR_lt_1 : R < 1} {f : } {h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z} {h_f_nonzero_at_zero : f 0 0} (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (z : ) (hz : z Metric.closedBall 0 R \ zerosetKfR R1 f) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = f z * ρh_finite_zeros.toFinset, ((R - star ρ * z / R) / (z - ρ)) ^ (analyticOrderAt f ρ).toNat
        theorem lem_frho_zero_contra (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (ρ : ) :
        f ρ 0ρzerosetKfR R1 f
        theorem lem_f_is_nonzero (f : ) :
        f 0 0f 0
        theorem lem_rho_in_disk_R1 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) :
        ρ R1
        theorem lem_zero_not_in_Kf (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) :
        f 0 00zerosetKfR R1 f
        theorem lem_rho_ne_zero (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (ρ : ) :
        ρ zerosetKfR R1 fρ 0
        theorem lem_mod_pos_iff_ne_zero (z : ) :
        z 0z > 0
        theorem lem_mod_rho_pos (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (ρ : ) :
        ρ zerosetKfR R1 fρ > 0
        theorem lem_rho_in_disk_R1_repeat (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) :
        ρ R1
        theorem lem_inv_mono_decr (x y : ) (hx : 0 < x) (hxy : x y) :
        1 / x 1 / y
        theorem lem_inv_mod_rho_ge_inv_R1 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) :
        1 / ρ 1 / R1
        theorem lem_mul_pos_preserves_ineq (a b c : ) (hab : a b) (hc : 0 < c) :
        a * c b * c
        theorem lem_R_div_mod_rho_ge_R_div_R1 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) :
        R / ρ R / R1
        theorem lem_R_div_mod_rho_ge_R_over_R1 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) :
        R / ρ R / R1
        theorem lem_mod_of_prod2 {ι : Type u_1} (K : Finset ι) (w : ι) :
        ρK, w ρ = ρK, w ρ
        theorem lem_mod_Bf_is_prod_mod (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) (hz : zzerosetKfR R1 f) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = f z * ρh_finite_zeros.toFinset, ((R - z * star ρ / R) / (z - ρ)) ^ (analyticOrderAt f ρ).toNat
        theorem lem_abs_pow (w : ) (n : ) :
        w ^ n = w ^ n
        theorem lem_Bmod_pow (R R1 : ) (hR_pos : 0 < R) (hR1 : R1 = 2 * R / 3) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) (z : ) :
        ((R - z * star ρ / R) / (z - ρ)) ^ (analyticOrderAt f ρ).toNat = (R - z * star ρ / R) / (z - ρ) ^ (analyticOrderAt f ρ).toNat
        theorem lem_mod_Bf_prod_mod (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) (hz : zzerosetKfR R1 f) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = f z * ρh_finite_zeros.toFinset, (R - z * star ρ / R) / (z - ρ) ^ (analyticOrderAt f ρ).toNat
        theorem lem_mod_Bf_at_0 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ 0 = f 0 * ρh_finite_zeros.toFinset, R / -ρ ^ (analyticOrderAt f ρ).toNat
        theorem lem_mod_div_ (w1 w2 : ) (hw2_ne_zero : w2 0) :
        w1 / w2 = w1 / w2
        theorem lem_mod_div_and_neg (R : ) (hR_pos : 0 < R) (ρ : ) (h_rho_ne_zero : ρ 0) :
        R / -ρ = R / ρ
        theorem lem_mod_Bf_at_0_eval (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ 0 = f 0 * ρh_finite_zeros.toFinset, (R / ρ) ^ (analyticOrderAt f ρ).toNat
        theorem lem_mod_of_pos_real (x : ) (hx : 0 < x) :
        |x| = x
        theorem lem_mod_Bf_at_0_as_ratio (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ 0 = f 0 * ρh_finite_zeros.toFinset, (R / ρ) ^ (analyticOrderAt f ρ).toNat
        theorem lem_prod_ineq {ι : Type u_1} (K : Finset ι) (a b : ι) (h_nonneg : ρK, 0 a ρ) (h_le : ρK, a ρ b ρ) :
        ρK, a ρ ρK, b ρ
        theorem lem_power_ineq (n : ) (c : ) (hc : c > 1) (hn : n 1) :
        c c ^ n
        theorem lem_power_ineq_1 (n : ) (c : ) (hc : 1 c) (hn : 1 n) :
        1 c ^ n
        theorem lem_prod_power_ineq {ι : Type u_1} (K : Finset ι) (c : ι) (n : ι) (h_c_ge_1 : ρK, 1 c ρ) (h_n_ge_1 : ρK, 1 n ρ) :
        ρK, c ρ ^ n ρ 1
        theorem lem_prod_1 {ι : Type u_1} {M : Type u_2} [CommMonoid M] (K : Finset ι) :
        K, 1 = 1
        theorem lem_prod_power_ineq1 {ι : Type u_1} (K : Finset ι) (c : ι) (n : ι) (h_c_ge_1 : ρK, 1 c ρ) (h_n_ge_1 : ρK, 1 n ρ) :
        ρK, c ρ ^ n ρ 1
        theorem lem_mod_lower_bound_1 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (hf0_eq_one : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (hR_lt_1 : R < 1) :
        ρh_finite_zeros.toFinset, (R / R1) ^ (analyticOrderAt f ρ).toNat 1
        theorem lem_mod_Bf_at_0_ge_1 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (hf0_eq_one : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ 0 1
        theorem lem_linear_factor_analytic (R : ) (hR_pos : 0 < R) (ρ z : ) :
        AnalyticAt (fun (w : ) => R - star ρ * w / R) z
        theorem lem_pow_analyticAt {g : } (n : ) (w : ) :
        AnalyticAt g wAnalyticAt (fun (z : ) => g z ^ n) w
        theorem lem_finset_prod_analyticAt {α : Type u_1} {S : Finset α} {g : α} (w : ) :
        (∀ aS, AnalyticAt (g a) w)AnalyticAt (fun (z : ) => aS, g a z) w
        theorem Set.infinite_Icc_of_lt {a b : } (h : a < b) :
        theorem infinite_closedBall_of_pos (x : ) (r : ) (hr : 0 < r) :
        theorem analyticOrderAt_ne_top_of_finite_zeros_in_ball (f : ) (R : ) (hR_pos : 0 < R) (hf_analytic : zMetric.closedBall 0 R, AnalyticAt f z) (ρ : ) (hρ_zero : f ρ = 0) (hρ_in_ball : ρ Metric.closedBall 0 R) (h_finite_zeros : {z : | z Metric.closedBall 0 R f z = 0}.Finite) :
        theorem lem_Bf_is_analytic (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        AnalyticOnNhd (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ) (Metric.closedBall 0 R)
        theorem lem_mod_Bf_eq_mod_f_on_boundary (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
        z = RBf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = f z
        theorem lem_Bf_bounded_on_boundary (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (hf_le_B : ∀ (z : ), z Rf z B) (z : ) :
        z = RBf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z B
        theorem norm_eq_radius_of_mem_sphere (w : ) (R : ) (hw : w Metric.sphere 0 R) :
        theorem lem_max_mod_principle_for_Bf (B R : ) (hB : 1 < B) (hR_pos : 0 < R) (fB : ) (h_analytic : AnalyticOnNhd fB (Metric.closedBall 0 R)) (h_bd_boundary : ∀ (z : ), z = RfB z B) (z : ) :
        z RfB z B
        theorem lem_Bf_bounded_in_disk_from_boundary (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (h_bd_boundary : ∀ (z : ), z = RBf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z B) (z : ) :
        z RBf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z B
        theorem lem_Bf_bounded_in_disk_from_f (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (hf_le_B : ∀ (z : ), z Rf z B) (z : ) :
        z RBf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z B
        theorem lem_Bf_at_0_le_M (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (hf_le_B : ∀ (z : ), z Rf z B) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ 0 B
        theorem lem_combine_bounds_on_Bf0 (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (hf0_eq_one : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (hBf0 : Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ 0 B) :
        (R / R1) ^ ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat B
        theorem lem_jensen_inequality_form (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (hf0_eq_one : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (hf_le_B : ∀ (z : ), z Rf z B) :
        (R / R1) ^ ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat B
        theorem lem_log_mono_inc {x y : } (hx : 0 < x) (hxy : x y) :
        theorem lem_jensen_log_form (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (hf0_eq_one : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (hf_le_B : ∀ (z : ), z Rf z B) :
        (∑ ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat) * Real.log (R / R1) Real.log B
        theorem lem_sum_ineq {ι : Type u_1} (K : Finset ι) (a b : ι) (h_le : iK, a i b i) :
        K.sum a K.sum b
        theorem nat_one_le_cast_real (n : ) :
        1 n1 n
        theorem zerosetKfR_eq_zeros_in_ball (R : ) (hR_pos : 0 < R) (f : ) :
        zerosetKfR R hR_pos f = {z : | z Metric.closedBall 0 R f z = 0}
        theorem lem_frho_zero' (R R1 : ) (hR_pos : 0 < R1) (hR1 : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (ρ : ) (h_rho_in_KfR1 : ρ zerosetKfR R1 f) :
        f ρ = 0
        theorem lem_sum_m_rho_1 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_finite_zeros : (zerosetKfR R1 f).Finite) (hR_lt_1 : R < 1) :
        h_finite_zeros.toFinset.card ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat
        theorem lem_sum_1_is_card {ι : Type u_1} (K : Finset ι) :
        xK, 1 = K.card
        theorem lem_sum_m_rho_bound (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (hf0_eq_one : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (hf_le_B : ∀ (z : ), z Rf z B) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat 1 / Real.log (R / R1) * Real.log B
        theorem lem_sum_1_bound (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (hf0_eq_one : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (hf_le_B : ∀ (z : ), z Rf z B) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        h_finite_zeros.toFinset.card 1 / Real.log (R / R1) * Real.log B
        theorem lem_num_zeros_bound (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (hf0_eq_one : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (hf_le_B : ∀ (z : ), z Rf z B) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        let S_zeros := zerosetKfR R1 f; have inst_fintype_S_zeros := h_finite_zeros.fintype; S_zeros.toFinset.card 1 / Real.log (R / R1) * Real.log B
        theorem f_zero_ne_zero {f : } (h_f_zero : f 0 = 1) :
        f 0 0
        theorem Bf_is_analytic_on_disk (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        AnalyticOnNhd (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ) (Metric.closedBall 0 R)
        theorem lem_Bf_eq_prod_Cf (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z = (∏ ρh_finite_zeros.toFinset, (R - star ρ * z / R) ^ (analyticOrderAt f ρ).toNat) * Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z
        theorem lem_num_prod_never_zero_all (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_nonzero_at_zero : f 0 0) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
        z Metric.closedBall 0 R1ρh_finite_zeros.toFinset, (R - star ρ * z / R) ^ (analyticOrderAt f ρ).toNat 0
        theorem Bf_never_zero (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
        z Metric.closedBall 0 R1Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ z 0
        theorem Bf0_not_zero (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ 0 0
        noncomputable def Lf {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
        Equations
        • Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec = Classical.choose
        Instances For
          theorem Lf_is_analytic (r R R1 : ) (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
          AnalyticOnNhd (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) (Metric.closedBall 0 r)
          theorem Lf_at_0_is_0 (r R R1 : ) (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
          Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec 0 = 0
          theorem lem_BCII {L : } {r M r₁ : } (hr_pos : 0 < r) (hM_pos : 0 < M) (hr₁_pos : 0 < r₁) (hr₁_lt_r : r₁ < r) (hL_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 r U DifferentiableOn L U) (hL0 : L 0 = 0) (hre_L_le_M : wMetric.closedBall 0 r, (L w).re M) {z : } (hz : z Metric.closedBall 0 r₁) :
          deriv L z 16 * M * r ^ 2 / (r - r₁) ^ 3
          theorem re_Lf_as_diff_of_log_mods (r R R1 : ) (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
          z Metric.closedBall 0 r(Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec z).re = Real.log Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ z - Real.log Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ 0
          theorem log_Bf_le_log_B (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (h_Bf_pos : ∀ (z : ), z R10 < Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ z) (h_Bf_bound : ∀ (z : ), z R1Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ z B) (z : ) :
          z R1Real.log Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ z Real.log B
          theorem log_Bf_le_log_B2 (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (h_Bf_bound : ∀ (z : ), z RBf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ z B) (z : ) :
          z R1Real.log Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ z Real.log B
          theorem log_Bf_le_log_B3 (B R R1 : ) (hB : 1 < B) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (h_f_bound : ∀ (z : ), z Rf z B) (z : ) :
          z R1Real.log Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ z Real.log B
          theorem log_Bf0_ge_0 (R R1 : ) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
          0 Real.log Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ 0
          theorem re_Lf_le_log_B (B r R R1 : ) (hB : 1 < B) (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (h_f_bound : ∀ (z : ), z Rf z B) (z : ) :
          z r(Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec z).re Real.log B
          theorem log_pos_of_one_lt {B : } (hB : 1 < B) :
          theorem apply_BC_to_Lf (B r1 r R R1 : ) (hB : 1 < B) (hr1_pos : 0 < r1) (hr1_lt_r : r1 < r) (hr_lt_R1 : r < R1) (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (h_f_bound : ∀ (z : ), z Rf z B) (z : ) :
          z r1deriv (Lf hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z 16 * Real.log B * r ^ 2 / (r - r1) ^ 3
          theorem analyticOnNhd_Bf_closedBall {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
          AnalyticOnNhd (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ) (Metric.closedBall 0 R)
          theorem helper_Bf_analytic_on_disk {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
          z Metric.closedBall 0 RAnalyticAt (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ) z
          theorem closedBall_R1_subset_R {R R1 : } (hR1_nonneg : 0 R1) (hR1_lt_R : R1 < R) :
          theorem logDerivconst {a : } {g : } (ha : a 0) (z : ) :
          logDeriv (fun (w : ) => a * g w) z = logDeriv g z
          theorem oneBneq0 {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) :
          Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ 0 0 (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ 0)⁻¹ 0
          theorem Lf_deriv_is_logBf_deriv {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
          z Metric.closedBall 0 R1 \ zerosetKfR R1 flogDeriv (fun (w : ) => Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ w / Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ 0) z = logDeriv (fun (w : ) => Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ w) z
          theorem logDeriv_div_const {a : } {g : } (ha : a 0) (z : ) :
          logDeriv (fun (w : ) => g w / a) z = logDeriv g z
          theorem deriv_over_fun_is_logDeriv {g : } (z : ) :
          deriv g z / g z = logDeriv g z
          theorem logDerivmul {f g : } {z : } (hf : DifferentiableAt f z) (hg : DifferentiableAt g z) (hf_ne : f z 0) (hg_ne : g z 0) :
          logDeriv (fun (w : ) => f w * g w) z = logDeriv f z + logDeriv g z
          theorem logDerivprod {K : Finset } {g : } {z : } (hg_diff : ρK, DifferentiableAt (g ρ) z) (hg_ne : ρK, g ρ z 0) :
          logDeriv (fun (w : ) => ρK, g ρ w) z = ρK, logDeriv (g ρ) z
          theorem logDerivdiv {h g : } {z : } (hh : DifferentiableAt h z) (hg : DifferentiableAt g z) (hh_ne : h z 0) (hg_ne : g z 0) :
          logDeriv (fun (w : ) => h w / g w) z = logDeriv h z - logDeriv g z
          theorem logDerivfunpow {g : } {z : } {m : } (hg : DifferentiableAt g z) :
          logDeriv (fun (w : ) => g w ^ m) z = m * logDeriv g z
          theorem z_minus_rho_diff_nonzero {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (ρ : ) :
          ρ zerosetKfR R1 fzMetric.closedBall 0 R1 \ zerosetKfR R1 f, z - ρ 0 DifferentiableAt (fun (w : ) => w - ρ) z
          theorem blaschke_num_diff_nonzero {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (ρ : ) :
          ρ zerosetKfR R1 fzMetric.closedBall 0 R, R - star ρ * z / R 0 DifferentiableAt (fun (w : ) => R - star ρ * w / R) z
          theorem blaschke_frac_diff_nonzero {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (ρ : ) :
          ρ zerosetKfR R1 fzMetric.closedBall 0 R1 \ zerosetKfR R1 f, (R - star ρ * z / R) / (z - ρ) 0 DifferentiableAt (fun (w : ) => (R - star ρ * w / R) / (w - ρ)) z
          theorem blaschke_pow_diff_nonzero {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (ρ : ) :
          ρ zerosetKfR R1 fzMetric.closedBall 0 R1 \ zerosetKfR R1 f, ((R - star ρ * z / R) / (z - ρ)) ^ (analyticOrderAt f ρ).toNat 0 DifferentiableAt (fun (w : ) => ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z
          theorem blaschke_prod_diff_nonzero {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
          z Metric.closedBall 0 R1 \ zerosetKfR R1 fρh_finite_zeros.toFinset, ((R - star ρ * z / R) / (z - ρ)) ^ (analyticOrderAt f ρ).toNat 0 DifferentiableAt (fun (w : ) => ρh_finite_zeros.toFinset, ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z
          theorem f_diff_nonzero_outside_Kf {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
          theorem Bf_diff_nonzero_outside_Kf {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
          z Metric.closedBall 0 R1 \ zerosetKfR R1 fBf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ z 0 DifferentiableAt (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ) z
          theorem logDeriv_fprod_is_sum {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
          z Metric.closedBall 0 R1 \ zerosetKfR R1 flogDeriv (fun (w : ) => f w * ρh_finite_zeros.toFinset, ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z = logDeriv f z + logDeriv (fun (w : ) => ρh_finite_zeros.toFinset, ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z
          theorem nhds_avoids_finset {z : } (K : Finset ) (hz : zK) :
          ∀ᶠ (w : ) in nhds z, ρK, w ρ
          theorem pow_div_pow_eq_div_pow (a b : ) (n : ) :
          a ^ n / b ^ n = (a / b) ^ n
          theorem Cf_eventually_eq_f_div_prod {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ : ) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) {z : } (hz : z Metric.closedBall 0 R1 \ zerosetKfR R1 f) :
          (fun (w : ) => Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ w) =ᶠ[nhds z] fun (w : ) => f w / ρh_finite_zeros.toFinset, (w - ρ) ^ (analyticOrderAt f ρ).toNat
          theorem eventuallyEq_mul_right_fun {α : Type u_1} {β : Type u_2} {l : Filter α} [Mul β] {f g h : αβ} (hfg : f =ᶠ[l] g) :
          (fun (x : α) => f x * h x) =ᶠ[l] fun (x : α) => g x * h x
          theorem inv_prod_complex {ι : Type u_1} (s : Finset ι) (f : ι) :
          (∏ xs, f x)⁻¹ = xs, (f x)⁻¹
          theorem prod_num_mul_inv_den_eq_prod_ratio (K : Finset ) (N D : ) (m : ) :
          (∏ ρK, N ρ ^ m ρ) * (∏ ρK, D ρ ^ m ρ)⁻¹ = ρK, (N ρ / D ρ) ^ m ρ
          theorem prod_num_mul_inv_den_eq_prod_ratio_fun (K : Finset ) (N D : ) (m : ) :
          (fun (w : ) => (∏ ρK, N ρ w ^ m ρ) * (∏ ρK, D ρ w ^ m ρ)⁻¹) = fun (w : ) => ρK, (N ρ w / D ρ w) ^ m ρ
          theorem div_mul_eq_mul_mul_inv_fun {α : Sort u_1} (f A B : α) :
          (fun (w : α) => f w / A w * B w) = fun (w : α) => f w * (B w * (A w)⁻¹)
          theorem assoc_fun_mul {α : Sort u_1} (f g h : α) :
          (fun (w : α) => f w * (g w * h w)) = fun (w : α) => f w * g w * h w
          theorem prod_num_mul_inv_den_eq_prod_ratio_fun_mem (K : Finset ) (N D : ) (m : ) :
          (fun (w : ) => (∏ ρK, N ρ w ^ m ρ) * (∏ ρK, D ρ w ^ m ρ)⁻¹) = fun (w : ) => ρK, (N ρ w / D ρ w) ^ m ρ
          theorem eventuallyEq_of_eq {α : Type u_1} {β : Type u_2} {l : Filter α} {f g : αβ} (h : f = g) :
          f =ᶠ[l] g
          theorem logDeriv_congr_of_eventuallyEq {f g : } {z : } (hfg : f =ᶠ[nhds z] g) :
          theorem logDeriv_Bf_is_sum {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
          z Metric.closedBall 0 R1 \ zerosetKfR R1 flogDeriv (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_finite_zeros h_σ) z = logDeriv f z + logDeriv (fun (w : ) => ρh_finite_zeros.toFinset, ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z
          theorem logDeriv_def_as_frac {f : } {z : } (hf : DifferentiableAt f z) (hf_ne : f z 0) :
          logDeriv f z = deriv f z / f z
          def ball_containment {r R1 : } (_hr_pos : 0 < r) (hr_lt_R1 : r < R1) (z : ) (hz : z Metric.closedBall 0 r) :
          Equations
          • =
          Instances For
            theorem in_r_minus_kf {R1 r : } {f : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (z : ) (hz : z Metric.closedBall 0 r \ zerosetKfR R1 f) :
            theorem Lf_deriv_step1 {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
            z Metric.closedBall 0 r \ zerosetKfR R1 fderiv (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z = deriv f z / f z + logDeriv (fun (w : ) => ρh_finite_zeros.toFinset, ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z
            theorem logDeriv_prod_is_sum {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
            z Metric.closedBall 0 R1 \ zerosetKfR R1 flogDeriv (fun (w : ) => ρh_finite_zeros.toFinset, ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z = ρh_finite_zeros.toFinset, logDeriv (fun (w : ) => ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z
            theorem logDeriv_power_is_mul {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
            z Metric.closedBall 0 R1 \ zerosetKfR R1 fρh_finite_zeros.toFinset, logDeriv (fun (w : ) => ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z = (analyticOrderAt f ρ).toNat * logDeriv (fun (w : ) => (R - star ρ * w / R) / (w - ρ)) z
            theorem logDeriv_prod_is_sum_mul {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
            z Metric.closedBall 0 R1 \ zerosetKfR R1 flogDeriv (fun (w : ) => ρh_finite_zeros.toFinset, ((R - star ρ * w / R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z = ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat * logDeriv (fun (w : ) => (R - star ρ * w / R) / (w - ρ)) z
            theorem Lf_deriv_step2 {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
            z Metric.closedBall 0 r \ zerosetKfR R1 fderiv (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z = deriv f z / f z + ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat * logDeriv (fun (w : ) => (R - star ρ * w / R) / (w - ρ)) z
            theorem logDeriv_Blaschke_is_diff {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
            z Metric.closedBall 0 R1 \ zerosetKfR R1 fρh_finite_zeros.toFinset, logDeriv (fun (w : ) => (R - star ρ * w / R) / (w - ρ)) z = logDeriv (fun (w : ) => R - star ρ * w / R) z - logDeriv (fun (w : ) => w - ρ) z
            theorem logDeriv_linear {a b z : } (ha : a 0) (hz : z -b / a) :
            logDeriv (fun (w : ) => a * w + b) z = a / (a * z + b)
            theorem logDeriv_denominator {ρ z : } (hz : z ρ) :
            logDeriv (fun (w : ) => w - ρ) z = 1 / (z - ρ)
            theorem logDeriv_numerator_pre {R : } {ρ z : } :
            logDeriv (fun (w : ) => R - star ρ * w / R) z = -star ρ / R / (R - star ρ * z / R)
            theorem star_ne_zero_of_ne_zero {ρ : } ( : ρ 0) :
            star ρ 0
            theorem field_identity_general {K : Type u_1} [Field K] {a b c : K} (ha : a 0) (hb : b 0) (hden : a - c * b / a 0) :
            -(b / a) / (a - c * b / a) = 1 / (c - a ^ 2 / b)
            theorem complex_identity_from_field {R : } {ρ z : } (hR : R 0) ( : ρ 0) (hden : R - star ρ * z / R 0) :
            -star ρ / R / (R - star ρ * z / R) = 1 / (z - R ^ 2 / star ρ)
            theorem logDeriv_numerator_rearranged {R : } {ρ z : } (hR : R 0) (hrho : ρ 0) (h_denom_ne_zero : R - star ρ * z / R 0) :
            -star ρ / R / (R - star ρ * z / R) = 1 / (z - R ^ 2 / star ρ)
            theorem logDeriv_numerator {R : } {ρ z : } (hR : R 0) (hrho : ρ 0) (h_denom_ne_zero : R - star ρ * z / R 0) :
            logDeriv (fun (w : ) => R - star ρ * w / R) z = 1 / (z - R ^ 2 / star ρ)
            theorem logDeriv_Blaschke_is_diff_frac {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_zero : f 0 = 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_finite_zeros : (zerosetKfR R1 f).Finite) (ρ : ) :
            ρ h_finite_zeros.toFinsetzMetric.closedBall 0 R1 \ zerosetKfR R1 f, logDeriv (fun (w : ) => (R - star ρ * w / R) / (w - ρ)) z = 1 / (z - R ^ 2 / star ρ) - 1 / (z - ρ)
            theorem Lf_deriv_step3 {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
            z Metric.closedBall 0 r \ zerosetKfR R1 fderiv (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z = deriv f z / f z + ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat * (1 / (z - R ^ 2 / star ρ) - 1 / (z - ρ))
            theorem sum_of_diff {K : Finset } {a b : } :
            ρK, (a ρ - b ρ) = ρK, a ρ - ρK, b ρ
            theorem sum_rearranged {r R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
            z Metric.closedBall 0 r \ zerosetKfR R1 fρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat * (1 / (z - R ^ 2 / star ρ) - 1 / (z - ρ)) = ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - R ^ 2 / star ρ) - ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - ρ)
            theorem Lf_deriv_final_formula {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
            z Metric.closedBall 0 r \ zerosetKfR R1 fderiv (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z = deriv f z / f z - ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - ρ) + ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - R ^ 2 / star ρ)
            theorem rearrange_Lf_deriv {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
            z Metric.closedBall 0 r \ zerosetKfR R1 fderiv f z / f z - ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - ρ) = deriv (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z - ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - R ^ 2 / star ρ)
            theorem triangle_ineq_sum {w₁ w₂ : } :
            w₁ - w₂ w₁ + w₂
            theorem target_inequality_setup {R R1 r : } {f : } {h_σ : } (hr_pos : 0 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hR1_pos : 0 < R1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (z : ) :
            z Metric.closedBall 0 r \ zerosetKfR R1 fderiv f z / f z - ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - ρ) deriv (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z + ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - R ^ 2 / star ρ)
            theorem norm_div_eq (a b : ) (hb : b 0) :
            theorem norm_Rsq_div_conj (R : ) (ρ : ) ( : ρ 0) :
            R ^ 2 / star ρ = R ^ 2 / ρ
            theorem zerosetKfR_subset_closedBall {R1 : } (hR1 : 0 < R1) {f : } :
            theorem mem_zerosetKfR_ne_zero_of_f0_eq_one {R1 : } (hR1 : 0 < R1) {f : } (hf0 : f 0 = 1) {ρ : } ( : ρ zerosetKfR R1 hR1 f) :
            ρ 0
            theorem mem_zerosetKfR_norm_le {R1 : } (hR1 : 0 < R1) {f : } {ρ : } ( : ρ zerosetKfR R1 hR1 f) :
            ρ R1
            theorem lem_sum_bound_step2 {R R1 : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (z : ) :
            z Metric.closedBall 0 R1 \ zerosetKfR R1 fρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / z - R ^ 2 / star ρ 1 / (R ^ 2 / R1 - R1) * ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat
            theorem sq_div_sub_pos (a b : ) (ha_pos : 0 < a) (hab : a < b) :
            0 < b ^ 2 / a - a
            theorem final_sum_bound {R R1 B : } {f : } (hR1_pos : 0 < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (hB : 1 < B) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_f_bounded : zMetric.closedBall 0 R, f z B) (z : ) :
            z Metric.closedBall 0 R1 \ zerosetKfR R1 fρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - R ^ 2 / star ρ) 1 / ((R ^ 2 / R1 - R1) * Real.log (R / R1)) * Real.log B
            theorem final_inequality {h_σ : } (B : ) (hB : 1 < B) (r1 r R R1 : ) (hr1pos : 0 < r1) (hr1_lt_r : r1 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR_lt_1 : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (h_f_bounded : zMetric.closedBall 0 R, f z B) (z : ) :
            z Metric.closedBall 0 r1 \ zerosetKfR R1 fderiv f z / f z - ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - ρ) 16 * r ^ 2 / (r - r1) ^ 3 * Real.log B + 1 / ((R ^ 2 / R1 - R1) * Real.log (R / R1)) * Real.log B
            theorem final_ineq1 {h_σ : } (B : ) (hB : 1 < B) (r1 r R R1 : ) (hr1pos : 0 < r1) (hr1_lt_r : r1 < r) (hr_lt_R1 : r < R1) (hR1_lt_R : R1 < R) (hR : R < 1) (f : ) (h_f_analytic : zMetric.closedBall 0 1, AnalyticAt f z) (h_f_zero : f 0 = 1) (h_finite_zeros : (zerosetKfR R1 f).Finite) (h_σ_spec : σzerosetKfR R1 f, AnalyticAt (h_σ σ) σ h_σ σ σ 0 ∀ᶠ (z : ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z) (h_f_bounded : zMetric.closedBall 0 R, f z B) (z : ) :
            z Metric.closedBall 0 r1 \ zerosetKfR R1 fderiv f z / f z - ρh_finite_zeros.toFinset, (analyticOrderAt f ρ).toNat / (z - ρ) (16 * r ^ 2 / (r - r1) ^ 3 + 1 / ((R ^ 2 / R1 - R1) * Real.log (R / R1))) * Real.log B