theorem
lem_zeros_have_limit_point
(R : ℝ)
(hR : 0 < R)
(f : ℂ → ℂ)
(h_Kf_inf : (zerosetKfR R hR f).Infinite)
:
∃ ρ₀ ∈ Metric.closedBall 0 R, AccPt ρ₀ (Filter.principal (zerosetKfR R hR f))
theorem
lem_identity_theorem
(f : ℂ → ℂ)
(hf : AnalyticOnNhd ℂ f (Metric.closedBall 0 1))
(ρ₀ : ℂ)
(hρ₀_in_D1 : ρ₀ ∈ Metric.ball 0 1)
(h_acc : AccPt ρ₀ (Filter.principal {ρ : ℂ | ρ ∈ Metric.ball 0 1 ∧ f ρ = 0}))
:
Set.EqOn f 0 (Metric.ball 0 1)
theorem
lem_identity_theoremR
(R : ℝ)
(hR : 0 < R)
(hR' : R < 1)
(f : ℂ → ℂ)
(hf : AnalyticOnNhd ℂ f (Metric.closedBall 0 1))
(ρ₀ : ℂ)
(hρ₀_in_DR : ρ₀ ∈ Metric.closedBall 0 R)
(h_acc : AccPt ρ₀ (Filter.principal {ρ : ℂ | ρ ∈ Metric.ball 0 1 ∧ f ρ = 0}))
:
Set.EqOn f 0 (Metric.ball 0 1)
theorem
lem_identity_theoremKR
(R : ℝ)
(hR : 0 < R)
(hR' : R < 1)
(f : ℂ → ℂ)
(hf : AnalyticOnNhd ℂ f (Metric.closedBall 0 1))
(h_exists_rho0 : ∃ ρ₀ ∈ Metric.closedBall 0 R, AccPt ρ₀ (Filter.principal (zerosetKfR R hR f)))
:
Set.EqOn f 0 (Metric.ball 0 1)
theorem
lem_identity_infiniteKR
(R : ℝ)
(hR : 0 < R)
(hR' : R < 1)
(f : ℂ → ℂ)
(hf : AnalyticOnNhd ℂ f (Metric.closedBall 0 1))
(h_Kf_inf : (zerosetKfR R hR f).Infinite)
:
Set.EqOn f 0 (Metric.ball 0 1)
theorem
lem_Contra_finiteKR
(R : ℝ)
(hR : 0 < R)
(hR' : R < 1)
(f : ℂ → ℂ)
(hf : AnalyticOnNhd ℂ f (Metric.closedBall 0 1))
(h_exists_nonzero : ∃ z ∈ Metric.ball 0 1, f z ≠ 0)
:
(zerosetKfR R hR f).Finite
theorem
lem_frho_zero
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(ρ : ℂ)
(h_rho_in_KfR1 : ρ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_m_rho_is_nat
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(hR_lt_1 : R < 1)
(ρ : ℂ)
(h_rho_in_KfR1 : ρ ∈ zerosetKfR R1 ⋯ f)
:
theorem
analyticOrderAt_ge_one_of_zero
(f : ℂ → ℂ)
(z : ℂ)
(hf : AnalyticAt ℂ f z)
(hz : f z = 0)
(hfinite : analyticOrderAt f z ≠ ⊤)
:
theorem
lem_m_rho_ge_1
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(hR_lt_1 : R < 1)
(ρ : ℂ)
(h_rho_in_KfR1 : ρ ∈ zerosetKfR R1 ⋯ f)
:
noncomputable def
Cf
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(z : ℂ)
:
The “deflated” quotient: divide f
by the product of (z-ρ)^{m_ρ}
, and at a zero z=σ
use the local factor function h_σ σ
in the numerator (so the expression extends analytically).
Equations
- One or more equations did not get rendered due to their size.
Instances For
Helper lemmas used by the Cf proofs (statements only) #
theorem
lem_analDiv
(R : ℝ)
(hR_pos : 0 < R)
(hR_lt_1 : R < 1)
(w : ℂ)
(hw : w ∈ Metric.closedBall 0 R)
(h g : ℂ → ℂ)
(hh : AnalyticAt ℂ h w)
(hg : AnalyticAt ℂ g w)
(hg_ne : g w ≠ 0)
:
AnalyticAt ℂ (fun (z : ℂ) => h z / g z) w
theorem
lem_ratioAnalAt
(w : ℂ)
(R R1 : ℝ)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h : ℂ → ℂ)
(hh : AnalyticAt ℂ h w)
(S : Finset ℂ)
(hS : ↑S ⊆ Metric.closedBall 0 R1)
(n : ℂ → ℕ)
(hn_pos : ∀ s ∈ S, 0 < n s)
(hw : w ∈ Metric.closedBall 0 1 \ ↑S)
:
theorem
lem_analytic_zero_factor
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_Cf_analytic_off_K
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R \ zerosetKfR R1 ⋯ f)
:
AnalyticAt ℂ (Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ) z
theorem
lem_Cf_at_sigma_onK
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_K_isolated
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(σ ρ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
(hρ : ρ ∈ zerosetKfR R1 ⋯ f)
(hne : σ ≠ ρ)
:
theorem
lem_Cf_at_sigma_offK0
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_prod_no_sigma1
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
(z : ℂ)
:
theorem
lem_prod_no_sigma2
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
(z : ℂ)
(hz : z ∉ zerosetKfR R1 ⋯ f)
:
theorem
lem_Cf_at_sigma_offK
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_Cf_at_sigma
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_h_ratio_anal
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
(g : ℂ → ℂ)
(hg_analytic : AnalyticAt ℂ g σ)
:
AnalyticAt ℂ (fun (z : ℂ) => g z / ∏ ρ ∈ h_finite_zeros.toFinset.erase σ, (z - ρ) ^ (analyticOrderAt f ρ).toNat) σ
theorem
lem_Cf_analytic_at_K
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
:
AnalyticAt ℂ (Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ) σ
theorem
lem_Cf_is_analytic
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R)
:
AnalyticAt ℂ (Cf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ) z
theorem
lem_f_nonzero_off_K
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f)
:
theorem
lem_Cf_nonzero_off_K
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f)
:
theorem
lem_Cf_nonzero_on_K
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(σ : ℂ)
(hσ : σ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_Cf_never_zero
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R1)
:
theorem
bl_num_diff
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R)
:
theorem
lem_bl_num_nonzero
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f)
:
noncomputable def
Bf
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(z : ℂ)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
lem_BfCf
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R \ zerosetKfR R1 ⋯ f)
:
theorem
lem_Bf_div
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R \ zerosetKfR R1 ⋯ f)
:
theorem
lem_Bf_prodpow
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R \ zerosetKfR R1 ⋯ f)
:
theorem
lem_Bf_off_K
{R R1 : ℝ}
{hR1_pos : 0 < R1}
{hR1_lt_R : R1 < R}
{hR_lt_1 : R < 1}
{f : ℂ → ℂ}
{h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z}
{h_f_nonzero_at_zero : f 0 ≠ 0}
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 R \ zerosetKfR R1 ⋯ f)
:
theorem
lem_frho_zero_contra
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(ρ : ℂ)
:
f ρ ≠ 0 → ρ ∉ zerosetKfR R1 ⋯ f
theorem
lem_zero_not_in_Kf
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
:
f 0 ≠ 0 → 0 ∉ zerosetKfR R1 ⋯ f
theorem
lem_rho_ne_zero
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(ρ : ℂ)
:
ρ ∈ zerosetKfR R1 ⋯ f → ρ ≠ 0
theorem
lem_mod_rho_pos
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(ρ : ℂ)
:
ρ ∈ zerosetKfR R1 ⋯ f → ‖ρ‖ > 0
theorem
lem_inv_mod_rho_ge_inv_R1
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(ρ : ℂ)
(h_rho_in_KfR1 : ρ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_R_div_mod_rho_ge_R_div_R1
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(ρ : ℂ)
(h_rho_in_KfR1 : ρ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_R_div_mod_rho_ge_R_over_R1
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(ρ : ℂ)
(h_rho_in_KfR1 : ρ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_mod_Bf_is_prod_mod
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
(hz : z ∉ zerosetKfR R1 ⋯ f)
:
theorem
lem_Bmod_pow
(R R1 : ℝ)
(hR_pos : 0 < R)
(hR1 : R1 = 2 * R / 3)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(ρ : ℂ)
(h_rho_in_KfR1 : ρ ∈ zerosetKfR R1 ⋯ f)
(z : ℂ)
:
theorem
lem_mod_Bf_prod_mod
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
(hz : z ∉ zerosetKfR R1 ⋯ f)
:
theorem
lem_mod_Bf_at_0
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
lem_mod_Bf_at_0_eval
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
lem_mod_Bf_at_0_as_ratio
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
lem_mod_lower_bound_1
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(hf0_eq_one : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(hR_lt_1 : R < 1)
:
theorem
lem_mod_Bf_at_0_ge_1
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(hf0_eq_one : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
lem_pow_analyticAt
{g : ℂ → ℂ}
(n : ℕ)
(w : ℂ)
:
AnalyticAt ℂ g w → AnalyticAt ℂ (fun (z : ℂ) => g z ^ n) w
theorem
lem_finset_prod_analyticAt
{α : Type u_1}
{S : Finset α}
{g : α → ℂ → ℂ}
(w : ℂ)
:
(∀ a ∈ S, AnalyticAt ℂ (g a) w) → AnalyticAt ℂ (fun (z : ℂ) => ∏ a ∈ S, g a z) w
theorem
analyticOrderAt_ne_top_of_finite_zeros_in_ball
(f : ℂ → ℂ)
(R : ℝ)
(hR_pos : 0 < R)
(hf_analytic : ∀ z ∈ Metric.closedBall 0 R, AnalyticAt ℂ f z)
(ρ : ℂ)
(hρ_zero : f ρ = 0)
(hρ_in_ball : ρ ∈ Metric.closedBall 0 R)
(h_finite_zeros : {z : ℂ | z ∈ Metric.closedBall 0 R ∧ f z = 0}.Finite)
:
theorem
lem_Bf_is_analytic
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
AnalyticOnNhd ℂ (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ)
(Metric.closedBall 0 R)
theorem
lem_mod_Bf_eq_mod_f_on_boundary
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
theorem
lem_Bf_bounded_on_boundary
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(hf_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
(z : ℂ)
:
theorem
lem_Bf_bounded_in_disk_from_boundary
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(h_bd_boundary :
∀ (z : ℂ), ‖z‖ = R → ‖Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ z‖ ≤ B)
(z : ℂ)
:
theorem
lem_Bf_bounded_in_disk_from_f
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(hf_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
(z : ℂ)
:
theorem
lem_Bf_at_0_le_M
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(hf_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
:
theorem
lem_combine_bounds_on_Bf0
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(hf0_eq_one : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(hBf0 : ‖Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic h_f_nonzero_at_zero h_finite_zeros h_σ 0‖ ≤ B)
:
theorem
lem_jensen_inequality_form
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(hf0_eq_one : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(hf_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
:
theorem
lem_jensen_log_form
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(hf0_eq_one : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(hf_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
:
theorem
lem_frho_zero'
(R R1 : ℝ)
(hR_pos : 0 < R1)
(hR1 : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(ρ : ℂ)
(h_rho_in_KfR1 : ρ ∈ zerosetKfR R1 ⋯ f)
:
theorem
lem_sum_m_rho_1
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(hR_lt_1 : R < 1)
:
theorem
lem_sum_m_rho_bound
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(hf0_eq_one : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(hf_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
lem_sum_1_bound
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(hf0_eq_one : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(hf_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
lem_num_zeros_bound
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(hf0_eq_one : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(hf_le_B : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
Bf_is_analytic_on_disk
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
AnalyticOnNhd ℂ (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ) (Metric.closedBall 0 R)
theorem
lem_Bf_eq_prod_Cf
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
theorem
lem_num_prod_never_zero_all
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_nonzero_at_zero : f 0 ≠ 0)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
theorem
Bf_never_zero
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
z ∈ Metric.closedBall 0 R1 → Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ z ≠ 0
theorem
Bf0_not_zero
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
noncomputable def
Lf
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
Equations
- Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec = Classical.choose ⋯
Instances For
theorem
Lf_is_analytic
(r R R1 : ℝ)
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
AnalyticOnNhd ℂ (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec)
(Metric.closedBall 0 r)
theorem
Lf_at_0_is_0
(r R R1 : ℝ)
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
lem_BCII
{L : ℂ → ℂ}
{r M r₁ : ℝ}
(hr_pos : 0 < r)
(hM_pos : 0 < M)
(hr₁_pos : 0 < r₁)
(hr₁_lt_r : r₁ < r)
(hL_domain : ∃ (U : Set ℂ), IsOpen U ∧ Metric.closedBall 0 r ⊆ U ∧ DifferentiableOn ℂ L U)
(hL0 : L 0 = 0)
(hre_L_le_M : ∀ w ∈ Metric.closedBall 0 r, (L w).re ≤ M)
{z : ℂ}
(hz : z ∈ Metric.closedBall 0 r₁)
:
theorem
re_Lf_as_diff_of_log_mods
(r R R1 : ℝ)
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
theorem
log_Bf_le_log_B
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(h_Bf_pos : ∀ (z : ℂ), ‖z‖ ≤ R1 → 0 < ‖Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ z‖)
(h_Bf_bound : ∀ (z : ℂ), ‖z‖ ≤ R1 → ‖Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ z‖ ≤ B)
(z : ℂ)
:
theorem
log_Bf_le_log_B2
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(h_Bf_bound : ∀ (z : ℂ), ‖z‖ ≤ R → ‖Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ z‖ ≤ B)
(z : ℂ)
:
theorem
log_Bf_le_log_B3
(B R R1 : ℝ)
(hB : 1 < B)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(h_f_bound : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
(z : ℂ)
:
theorem
log_Bf0_ge_0
(R R1 : ℝ)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
re_Lf_le_log_B
(B r R R1 : ℝ)
(hB : 1 < B)
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(h_f_bound : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
(z : ℂ)
:
theorem
analyticOnNhd_closedBall_exists_open_differentiableOn
{L : ℂ → ℂ}
{r : ℝ}
(h : AnalyticOnNhd ℂ L (Metric.closedBall 0 r))
:
∃ (U : Set ℂ), IsOpen U ∧ Metric.closedBall 0 r ⊆ U ∧ DifferentiableOn ℂ L U
theorem
apply_BC_to_Lf
(B r1 r R R1 : ℝ)
(hB : 1 < B)
(hr1_pos : 0 < r1)
(hr1_lt_r : r1 < r)
(hr_lt_R1 : r < R1)
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(h_f_bound : ∀ (z : ℂ), ‖z‖ ≤ R → ‖f z‖ ≤ B)
(z : ℂ)
:
theorem
analyticOnNhd_Bf_closedBall
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
AnalyticOnNhd ℂ (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ) (Metric.closedBall 0 R)
theorem
helper_Bf_analytic_on_disk
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
z ∈ Metric.closedBall 0 R → AnalyticAt ℂ (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ) z
theorem
oneBneq0
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
:
theorem
Lf_deriv_is_logBf_deriv
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f →
logDeriv
(fun (w : ℂ) =>
Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ w / Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ 0)
z = logDeriv (fun (w : ℂ) => Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ w) z
theorem
z_minus_rho_diff_nonzero
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(ρ : ℂ)
:
ρ ∈ zerosetKfR R1 ⋯ f →
∀ z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f, z - ρ ≠ 0 ∧ DifferentiableAt ℂ (fun (w : ℂ) => w - ρ) z
theorem
blaschke_num_diff_nonzero
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(ρ : ℂ)
:
theorem
blaschke_frac_diff_nonzero
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(ρ : ℂ)
:
theorem
blaschke_pow_diff_nonzero
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(ρ : ℂ)
:
ρ ∈ zerosetKfR R1 ⋯ f →
∀ z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f,
((↑R - star ρ * z / ↑R) / (z - ρ)) ^ (analyticOrderAt f ρ).toNat ≠ 0 ∧ DifferentiableAt ℂ (fun (w : ℂ) => ((↑R - star ρ * w / ↑R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat) z
theorem
blaschke_prod_diff_nonzero
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
theorem
f_diff_nonzero_outside_Kf
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f → f z ≠ 0 ∧ DifferentiableAt ℂ f z
theorem
Bf_diff_nonzero_outside_Kf
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f →
Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ z ≠ 0 ∧ DifferentiableAt ℂ (Bf R R1 hR1_pos hR1_lt_R hR_lt_1 f h_f_analytic ⋯ h_finite_zeros h_σ) z
theorem
logDeriv_fprod_is_sum
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f →
logDeriv
(fun (w : ℂ) =>
f w * ∏ ρ ∈ h_finite_zeros.toFinset, ((↑R - star ρ * w / ↑R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat)
z = logDeriv f z + logDeriv
(fun (w : ℂ) => ∏ ρ ∈ h_finite_zeros.toFinset, ((↑R - star ρ * w / ↑R) / (w - ρ)) ^ (analyticOrderAt f ρ).toNat)
z
theorem
Cf_eventually_eq_f_div_prod
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ : ℂ → ℂ → ℂ)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
{z : ℂ}
(hz : z ∈ Metric.closedBall 0 R1 \ zerosetKfR R1 ⋯ f)
:
theorem
logDeriv_Bf_is_sum
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
def
ball_containment
{r R1 : ℝ}
(_hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 r)
:
Equations
- ⋯ = ⋯
Instances For
theorem
in_r_minus_kf
{R1 r : ℝ}
{f : ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(z : ℂ)
(hz : z ∈ Metric.closedBall 0 r \ zerosetKfR R1 ⋯ f)
:
theorem
Lf_deriv_step1
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
theorem
logDeriv_prod_is_sum
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
theorem
logDeriv_power_is_mul
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
theorem
logDeriv_prod_is_sum_mul
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
theorem
Lf_deriv_step2
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
theorem
logDeriv_Blaschke_is_diff
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
theorem
logDeriv_Blaschke_is_diff_frac
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_zero : f 0 = 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(ρ : ℂ)
:
theorem
Lf_deriv_step3
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
theorem
sum_rearranged
{r R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
z ∈ Metric.closedBall 0 r \ zerosetKfR R1 ⋯ f →
∑ ρ ∈ h_finite_zeros.toFinset, ↑(analyticOrderAt f ρ).toNat * (1 / (z - ↑R ^ 2 / star ρ) - 1 / (z - ρ)) = ∑ ρ ∈ h_finite_zeros.toFinset, ↑(analyticOrderAt f ρ).toNat / (z - ↑R ^ 2 / star ρ) - ∑ ρ ∈ h_finite_zeros.toFinset, ↑(analyticOrderAt f ρ).toNat / (z - ρ)
theorem
Lf_deriv_final_formula
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
z ∈ Metric.closedBall 0 r \ zerosetKfR R1 ⋯ f →
deriv (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z = deriv f z / f z - ∑ ρ ∈ h_finite_zeros.toFinset, ↑(analyticOrderAt f ρ).toNat / (z - ρ) + ∑ ρ ∈ h_finite_zeros.toFinset, ↑(analyticOrderAt f ρ).toNat / (z - ↑R ^ 2 / star ρ)
theorem
rearrange_Lf_deriv
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
z ∈ Metric.closedBall 0 r \ zerosetKfR R1 ⋯ f →
deriv f z / f z - ∑ ρ ∈ h_finite_zeros.toFinset, ↑(analyticOrderAt f ρ).toNat / (z - ρ) = deriv (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z - ∑ ρ ∈ h_finite_zeros.toFinset, ↑(analyticOrderAt f ρ).toNat / (z - ↑R ^ 2 / star ρ)
theorem
target_inequality_setup
{R R1 r : ℝ}
{f : ℂ → ℂ}
{h_σ : ℂ → ℂ → ℂ}
(hr_pos : 0 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hR1_pos : 0 < R1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(z : ℂ)
:
z ∈ Metric.closedBall 0 r \ zerosetKfR R1 ⋯ f →
‖deriv f z / f z - ∑ ρ ∈ h_finite_zeros.toFinset, ↑(analyticOrderAt f ρ).toNat / (z - ρ)‖ ≤ ‖deriv (Lf hr_pos hr_lt_R1 hR1_lt_R hR_lt_1 hR1_pos h_f_analytic h_f_zero h_finite_zeros h_σ_spec) z‖ + ‖∑ ρ ∈ h_finite_zeros.toFinset, ↑(analyticOrderAt f ρ).toNat / (z - ↑R ^ 2 / star ρ)‖
theorem
lem_sum_bound_step2
{R R1 : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(z : ℂ)
:
theorem
final_sum_bound
{R R1 B : ℝ}
{f : ℂ → ℂ}
(hR1_pos : 0 < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(hB : 1 < B)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_f_bounded : ∀ z ∈ Metric.closedBall 0 R, ‖f z‖ ≤ B)
(z : ℂ)
:
theorem
final_inequality
{h_σ : ℂ → ℂ → ℂ}
(B : ℝ)
(hB : 1 < B)
(r1 r R R1 : ℝ)
(hr1pos : 0 < r1)
(hr1_lt_r : r1 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR_lt_1 : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(h_f_bounded : ∀ z ∈ Metric.closedBall 0 R, ‖f z‖ ≤ B)
(z : ℂ)
:
theorem
final_ineq1
{h_σ : ℂ → ℂ → ℂ}
(B : ℝ)
(hB : 1 < B)
(r1 r R R1 : ℝ)
(hr1pos : 0 < r1)
(hr1_lt_r : r1 < r)
(hr_lt_R1 : r < R1)
(hR1_lt_R : R1 < R)
(hR : R < 1)
(f : ℂ → ℂ)
(h_f_analytic : ∀ z ∈ Metric.closedBall 0 1, AnalyticAt ℂ f z)
(h_f_zero : f 0 = 1)
(h_finite_zeros : (zerosetKfR R1 ⋯ f).Finite)
(h_σ_spec :
∀ σ ∈ zerosetKfR R1 ⋯ f,
AnalyticAt ℂ (h_σ σ) σ ∧ h_σ σ σ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds σ, f z = (z - σ) ^ (analyticOrderAt f σ).toNat * h_σ σ z)
(h_f_bounded : ∀ z ∈ Metric.closedBall 0 R, ‖f z‖ ≤ B)
(z : ℂ)
: