Documentation

StrongPNT.PNT1_ComplexAnalysis

theorem lem_2logOlog :
(fun (t : ) => 2 * Real.log t) =O[Filter.atTop] fun (t : ) => Real.log t
theorem lem_logt22logt (t : ) (_ht : t 2) :
Real.log (t ^ 2) = 2 * Real.log t
theorem lem_log2tlogt2 (t : ) (ht : t 2) :
Real.log (2 * t) Real.log (t ^ 2)
theorem lem_log22log (t : ) (ht : t 2) :
Real.log (2 * t) 2 * Real.log t
theorem lem_exprule (n : ) (hn : n 1) (α β : ) :
n ^ (α + β) = n ^ α * n ^ β
theorem lem_realbw (b : ) (w : ) :
(b * w).re = b * w.re
theorem lem_sumReal {f : ℕ+} (hf : Summable f) :
(∑' (n : ℕ+), f n).re = ∑' (n : ℕ+), (f n).re
theorem lem_Euler (a : ) :
theorem lem_explog (n : ) (hn : n 1) :
n = Real.exp (Real.log n)
theorem lem_coseveny (n : ) (_hn : n 1) (y : ) :
Real.cos (-y * Real.log n) = Real.cos (y * Real.log n)
theorem lem_niyelog (n : ) (hn : n 1) (y : ) :
n ^ (-y * Complex.I) = Complex.exp (-y * Complex.I * (Real.log n))
theorem lem_eacosalog (n : ) (_hn : n 1) (y : ) :
(Complex.exp (-y * Complex.I * (Real.log n))).re = Real.cos (-y * Real.log n)
theorem lem_eacosalog2 (n : ) (hn : n 1) (y : ) :
(n ^ (-y * Complex.I)).re = Real.cos (-y * Real.log n)
theorem lem_eacosalog3 (n : ) (hn : n 1) (y : ) :
(n ^ (-y * Complex.I)).re = Real.cos (y * Real.log n)
theorem lem_cos2t (θ : ) :
Real.cos (2 * θ) = 2 * Real.cos θ ^ 2 - 1
theorem lem_cos2t2 (θ : ) :
2 * Real.cos θ ^ 2 = 1 + Real.cos (2 * θ)
theorem lem_cosSquare (θ : ) :
2 * (1 + Real.cos θ) ^ 2 = 2 + 4 * Real.cos θ + 2 * Real.cos θ ^ 2
theorem lem_cos2cos341 (θ : ) :
2 * (1 + Real.cos θ) ^ 2 = 3 + 4 * Real.cos θ + Real.cos (2 * θ)
theorem lem_SquarePos (y : ) :
0 y ^ 2
theorem lem_SquarePos2 (y : ) :
0 2 * y ^ 2
theorem lem_SquarePoscos (θ : ) :
0 2 * (1 + Real.cos θ) ^ 2
theorem lem_postrig (θ : ) :
0 3 + 4 * Real.cos θ + Real.cos (2 * θ)
theorem lem_postriglogn (n : ) (_hn : n 1) (t : ) :
0 3 + 4 * Real.cos (t * Real.log n) + Real.cos (2 * t * Real.log n)
theorem lem_seriesPos {r_n : ℕ+} {r : } (h_hasSum : HasSum r_n r) (h_nonneg : ∀ (n : ℕ+), r_n n 0) :
r 0
theorem real_part_of_diff (M : ) (w : ) :
(2 * M - w).re = 2 * M - w.re
theorem real_part_of_diffz (M : ) (f_z : ) :
(2 * M - f_z).re = 2 * M - f_z.re
theorem inequality_reversal (x M : ) (hxM : x M) :
2 * M - x M
theorem real_part_lower_bound (w : ) (M : ) (_hM : M > 0) (h : w.re M) :
2 * M - w.re M
theorem real_part_lower_bound2 (w : ) (M : ) (hM : M > 0) (h : w.re M) :
(2 * M - w).re M
theorem real_part_lower_bound3 (w : ) (M : ) (hM : M > 0) (h : w.re M) :
(2 * M - w).re > 0
theorem nonzero_if_real_part_positive (w : ) (hw_re_pos : w.re > 0) :
w 0
theorem lem_real_part_lower_bound4 (w : ) (M : ) (hM : M > 0) (h : w.re M) :
2 * M - w 0
theorem lem_abspos (z : ) :
z 0z > 0
theorem lem_real_part_lower_bound5 (w : ) (M : ) (hM : M > 0) (h : w.re M) :
2 * M - w > 0
theorem lem_wReIm (w : ) :
w = w.re + Complex.I * w.im
theorem lem_modaib (a b : ) :
a + Complex.I * b ^ 2 = a ^ 2 + b ^ 2
theorem lem_modcaib (a b c : ) :
c - a - Complex.I * b ^ 2 = (c - a) ^ 2 + b ^ 2
theorem lem_diffmods (a b c : ) :
c - a - Complex.I * b ^ 2 - a + Complex.I * b ^ 2 = (c - a) ^ 2 - a ^ 2
theorem lem_casq (a c : ) :
(c - a) ^ 2 = a ^ 2 - 2 * a * c + c ^ 2
theorem lem_casq2 (a c : ) :
(c - a) ^ 2 - a ^ 2 = c * (c - 2 * a)
theorem lem_diffmods2 (a b c : ) :
c - a - Complex.I * b ^ 2 - a + Complex.I * b ^ 2 = c * (c - 2 * a)
theorem lem_modulus_sq_ReImw (M : ) (w : ) :
2 * M - w ^ 2 - w ^ 2 = 4 * M * (M - w.re)
theorem lem_modulus_sq_identity (M : ) (w : ) :
2 * M - w ^ 2 - w ^ 2 = 4 * M * (M - w.re)
theorem lem_nonnegative_product (M x : ) (hM : M > 0) (hxM : x M) :
4 * M * (M - x) 0
theorem lem_nonnegative_product2 (M : ) (w : ) (hM : M > 0) (hw_re_le_M : w.re M) :
4 * M * (M - w.re) 0
theorem lem_nonnegative_product3 (M : ) (w : ) (hM : M > 0) (hw_re_le_M : w.re M) :
2 * M - w ^ 2 - w ^ 2 0
theorem lem_nonnegative_product4 (M : ) (w : ) (hM : M > 0) (hw_re_le_M : w.re M) :
2 * M - w ^ 2 w ^ 2
theorem lem_nonnegative_product5 (M : ) (w : ) (hM : M > 0) (hw_re_le_M : w.re M) :
2 * M - w w
theorem lem_nonnegative_product6 (M : ) (w : ) (hM : M > 0) (hw_re_le_M : w.re M) :
w 2 * M - w
theorem lem_ineqmultr (a b c : ) (hc : c > 0) (ha : 0 a) (hab : a b) :
a / c b / c
theorem lem_ineqmultrbb (a b : ) (hb : b > 0) (ha : 0 a) (hab : a b) :
a / b 1
theorem lem_nonnegative_product7 (M : ) (w : ) (hM : M > 0) (h_abs_diff_pos : 2 * M - w > 0) (h_abs_le_abs_diff : w 2 * M - w) :
w / 2 * M - w 1
theorem lem_nonnegative_product8 (M : ) (w : ) (hM : M > 0) (hw_re_le_M : w.re M) (h_abs_le_abs_diff : w 2 * M - w) :
w / 2 * M - w 1
theorem lem_nonnegative_product9 (M : ) (w : ) (hM : M > 0) (hw_re_le_M : w.re M) :
w / 2 * M - w 1
theorem lem_rtriangle (r : ) (N F : ) (hr : r > 0) :
r * N - F r * (N + F)
theorem rtriangle2 (r : ) (N F : ) (hr : r > 0) :
r * N - F r * N + r * F
theorem lem_rtriangle3 (r R : ) (N F : ) (hr : r > 0) (hR : r < R) (h : R * F r * N - F) :
theorem lem_rtriangle4 (r R : ) (N F : ) (hr : 0 < r) (hR : r < R) (h_hyp : R * F r * N - F) :
(R - r) * F r * N
theorem lem_absposeq (a : ) (ha : a > 0) :
|a| = a
theorem lem_a2a (a : ) (ha : a > 0) :
2 * a > 0
theorem lem_absposeq2 (a : ) (ha : a > 0) :
|2 * a| = 2 * a
theorem lem_rtriangle5 (r R M : ) (F : ) (hr : 0 < r) (hrR : r < R) (hM : M > 0) (h_hyp : R * F r * 2 * M - F) :
(R - r) * F 2 * M * r
theorem lem_RrFpos (r R : ) (F : ) (hr : 0 < r) (hrR : r < R) :
(R - r) * F 0
theorem lem_rtriangle6 (r R M : ) (F : ) (hr : 0 < r) (hrR : r < R) (hM : M > 0) (h_hyp : (R - r) * F 2 * M * r) :
F 2 * M * r / (R - r)
theorem lem_rtriangle7 (r R M : ) (F : ) (hr : 0 < r) (hrR : r < R) (hM : M > 0) (h_hyp : R * F r * 2 * M - F) :
F 2 * M * r / (R - r)
def ballDR (R : ) :
Equations
Instances For
    theorem analyticAt_to_analyticWithinAt {f : } {S : Set } {z : } (hf : AnalyticAt f z) :
    theorem analyticWithinAt_to_analyticAt_aux {f : } {S : Set } {z : } (hS : S nhds z) (p : FormalMultilinearSeries ) (r : ENNReal) (h_conv_on_inter : r p.radius) (hr_pos : 0 < r) (hasSumt : ∀ {y : }, z + y insert z Sy EMetric.ball 0 rHasSum (fun (n : ) => (p n) fun (x : Fin n) => y) (f (z + y))) (ε : ) (hε_pos : ε > 0) (h_ball_subset_S : Metric.ball z ε S) :
    let r' := min r (ENNReal.ofReal ε); ∀ {y : }, y EMetric.ball 0 r'HasSum (fun (n : ) => (p n) fun (x : Fin n) => y) (f (z + y))
    theorem analyticWithinAt_to_analyticAt {f : } {S : Set } {z : } (hS : S nhds z) (h : AnalyticWithinAt f S z) :
    theorem lem_not0mono (R : ) (hR_pos : 0 < R) (hR_lt_one : R < 1) :
    {z : | z R z 0} {z : | z 0}
    theorem lem_analmono {T S : Set } {f : } (hS : AnalyticOn f S) (hT : T S) :
    theorem lem_1zanalDR (R : ) (hR_pos : 0 < R) :
    AnalyticOn (fun (z : ) => z⁻¹) {z : | z R z 0}
    theorem lem_analprod {T : Set } {f1 f2 : } (hf1 : AnalyticOn f1 T) (hf2 : AnalyticOn f2 T) :
    AnalyticOn (f1 * f2) T
    theorem lem_analprodST {T S : Set } {f1 f2 : } (hTS : T S) (hf1 : AnalyticOn f1 T) (hf2 : AnalyticOn f2 S) :
    AnalyticOn (f1 * f2) T
    theorem lem_analprodTDR (R : ) (f1 f2 : ) :
    theorem lem_fzzTanal {R : } (hR_pos : 0 < R) (f : ) (hf : AnalyticOn f (Metric.closedBall 0 R)) :
    AnalyticOn (fun (z : ) => f z / z) {z : | z R z 0}
    theorem lem_AnalOntoWithin {V : Set } {h : } (hh : AnalyticOn h V) (z : ) (hz : z V) :
    theorem lem_AnalWithintoOn {R : } (hR : 0 < R) (h : ) :
    theorem lem_DR0T {R : } (hR : 0 < R) :
    theorem lem_analWWWithin {R : } (hR_pos : 0 < R) (h : ) :
    theorem lem_analWWithinAtOn (R : ) (hR_pos : 0 < R) (h : ) (h_at_0 : AnalyticWithinAt h (Metric.closedBall 0 R) 0) (h_at_T : z{z : | z R z 0}, AnalyticWithinAt h (Metric.closedBall 0 R) z) :
    theorem lem_AnalAttoWithin {h : } {s : Set } (hh : AnalyticAt h 0) :
    theorem analyticWithinAt_punctured_to_closedBall {R : } (hR : 0 < R) {h : } {z : } (hz : z {w : | w R w 0}) (h_within : AnalyticWithinAt h {w : | w R w 0} z) :
    theorem lem_analAtOnOn {R : } (hR_pos : 0 < R) (h : ) :
    theorem lem_orderne0 (f : ) (hf : AnalyticAt f 0) (hf0 : f 0 = 0) :
    theorem lem_ordernetop (f : ) (hf : AnalyticAt f 0) (hf_ne_zero : ¬∀ᶠ (z : ) in nhds 0, f z = 0) :
    theorem lem_ordernatcast (f : ) (hf : AnalyticAt f 0) (n : ) (hn : analyticOrderAt f 0 = n) :
    ∃ (g : ), AnalyticAt g 0 g 0 0 ∀ᶠ (z : ) in nhds 0, f z = z ^ n * g z
    theorem lem_ordernatcast1 (f : ) (hf : AnalyticAt f 0) (n : ) (hn : analyticOrderAt f 0 = n) (hn_ne_zero : n 0) :
    ∃ (h : ), AnalyticAt h 0 ∀ᶠ (z : ) in nhds 0, f z = z * h z
    theorem lem_ordernatcast2_old (f : ) (hf : AnalyticAt f 0) (hf0 : f 0 = 0) (h_not_eventually_zero : ¬∀ᶠ (z : ) in nhds 0, f z = 0) :
    ∃ (h : ), AnalyticAt h 0 ∀ᶠ (z : ) in nhds 0, f z = z * h z
    theorem lem_ordernatcast2 {R : } (hR_pos : 0 < R) (f : ) (hf0 : f 0 = 0) (hf : AnalyticOn f (Metric.closedBall 0 R)) :
    AnalyticAt (fun (z : ) => if z = 0 then (fderiv f 0) 1 else f z / z) 0
    theorem ex (x : ) {r : } (hr : r > 0) :
    theorem lem_ballDR (R : ) (hR : R > 0) :
    theorem lem_inDR (R : ) (hR : R > 0) (w : ) (hw : w closure (ballDR R)) :
    theorem lem_notinDR (R : ) (hR : R > 0) (w : ) (hw : wballDR R) :
    theorem lem_legeR (R : ) (hR : R > 0) (w : ) (hw1 : w R) (hw2 : w R) :
    theorem lem_circleDR (R : ) (hR : R > 0) (w : ) (hw1 : w closure (ballDR R)) (hw2 : wballDR R) :
    theorem lem_Rself (R : ) (hR : R > 0) :
    |R| = R
    theorem lem_Rself2 (R : ) (hR : R > 0) :
    |R| R
    theorem lem_Rself3 (R : ) (hR : R > 0) :
    R closure (ballDR R)
    theorem lem_DRcompact (R : ) (hR : R > 0) :
    theorem lem_ExtrValThm {K : Set } (hK : IsCompact K) (hK_nonempty : K.Nonempty) (g : K) (hg : Continuous g) :
    ∃ (v : K), ∀ (z : K), g z g v
    theorem lem_ExtrValThmDR (R : ) (hR : R > 0) (g : (closure (ballDR R))) (hg : Continuous g) :
    ∃ (v : (closure (ballDR R))), ∀ (z : (closure (ballDR R))), g z g v
    theorem lem_AnalCont {R : } (hR : R > 0) (H : ) (h_analytic : AnalyticOn H (closure (ballDR R))) :
    theorem lem_ExtrValThmh {R : } (hR : R > 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) :
    ∃ (u : (closure (ballDR R))), ∀ (z : (closure (ballDR R))), h u h z
    theorem lem_MaxModP (R : ) (hR : R > 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) (w : ) (hw_in_DR : w ballDR R) (hw_max : zballDR R, h z h w) (z : ) :
    z closure (ballDR R)h z = h w
    theorem lem_MaxModR (R : ) (hR : R > 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) (w : ) (hw_in_DR : w ballDR R) (hw_max : zballDR R, h z h w) :
    h R = h w
    theorem lem_MaxModRR (R : ) (hR : R > 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) (w : ) (hw_in_DR : w ballDR R) (hw_max : zballDR R, h z h w) (z : ) :
    z closure (ballDR R)h R h z
    theorem lem_MaxModv2 (R : ) (hR : R > 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) :
    ∃ (v : (closure (ballDR R))), v = R ∀ (z : (closure (ballDR R))), h v h z
    theorem lem_MaxModv3 (R : ) (hR : R > 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) :
    ∃ (v : ), v = R zclosure (ballDR R), h v h z
    theorem lem_MaxModv4 (R B : ) (hR : R > 0) (hB : B 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) (h_boundary_bound : ∀ (z : ), z = Rh z B) :
    ∃ (v : ), v = R (∀ wclosure (ballDR R), h v h w) h v B
    theorem lem_HardMMP (R B : ) (hR : R > 0) (hB : B 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) (h_boundary_bound : ∀ (z : ), z = Rh z B) (w : ) :
    w closure (ballDR R)h w B
    theorem lem_EasyMMP (R B : ) (hR : R > 0) (hB : B 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) (h_closure_bound : wclosure (ballDR R), h w B) (z : ) :
    z = Rh z B
    theorem lem_MMP (R B : ) (hR : R > 0) (hB : B 0) (h : ) (h_analytic : AnalyticOn h (closure (ballDR R))) :
    (∀ zclosure (ballDR R), h z B) ∀ (z : ), z = Rh z B
    theorem lem_denominator_nonzero (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_re_bound : zclosure (ballDR R), (f z).re M) (z : ) :
    z closure (ballDR R)2 * M - f z 0
    theorem lem_f_vs_2M_minus_f (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_re_bound : zclosure (ballDR R), (f z).re M) (z : ) :
    z closure (ballDR R)f z / 2 * M - f z 1
    theorem fderiv_factorization_at_zero (R : ) (hR : R > 0) (f h : ) (h_analytic_f : AnalyticOn f (closure (ballDR R))) (h_analytic_h : AnalyticOn h (closure (ballDR R))) (h_zero : f 0 = 0) (h_factor : zclosure (ballDR R), f z = z * h z) :
    (fderiv f 0) 1 = h 0
    theorem lem_removable_singularity (R : ) (hR : R > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) :
    AnalyticOn (fun (z : ) => if z = 0 then (fderiv f 0) 1 else f z / z) (closure (ballDR R))
    theorem lem_quotient_analytic {R : } (hR : R > 0) (h1 h2 : ) (h_analytic1 : AnalyticOn h1 (closure (ballDR R))) (h_analytic2 : AnalyticOn h2 (closure (ballDR R))) (h_nonzero : zclosure (ballDR R), h2 z 0) :
    AnalyticOn (fun (z : ) => h1 z / h2 z) (closure (ballDR R))
    noncomputable def f_M (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) :
    Equations
    Instances For
      theorem lem_g_analytic (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) :
      AnalyticOn (f_M R M hR hM f h_analytic h_zero h_re_bound) (closure (ballDR R))
      theorem lem_absab (a b : ) (hb : b 0) :
      theorem lem_g_on_boundaryz (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (z : ) (hz_in_closure : z closure (ballDR R)) (hz_nonzero : z 0) :
      f_M R M hR hM f h_analytic h_zero h_re_bound z = f z / z / 2 * M - f z
      theorem lem_fzzR (R : ) (hR : R > 0) (z w : ) (hz : z = R) :
      w / z = w / R
      theorem lem_g_on_boundary (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (z : ) (hz_on_boundary : z = R) :
      f_M R M hR hM f h_analytic h_zero h_re_bound z = f z / R / 2 * M - f z
      theorem lem_f_vs_2M_minus_fR (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (z : ) (hz_in_closure : z closure (ballDR R)) :
      f z / R / 2 * M - f z 1 / R
      theorem lem_g_boundary_bound0 (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (z : ) (hz_on_boundary : z = R) :
      f_M R M hR hM f h_analytic h_zero h_re_bound z 1 / R
      theorem lem_g_interior_bound (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (z : ) :
      z closure (ballDR R)f_M R M hR hM f h_analytic h_zero h_re_bound z 1 / R
      theorem lem_g_at_r (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (r : ) (hr_pos : r > 0) (hr_lt_R : r < R) (z : ) (hz_on_boundary : z = r) :
      f_M R M hR hM f h_analytic h_zero h_re_bound z = f z / r / 2 * M - f z
      theorem lem_g_at_rR (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (r : ) (hr_pos : r > 0) (hr_lt_R : r < R) (z : ) (hz_on_boundary : z = r) :
      f z / r / 2 * M - f z 1 / R
      theorem lem_fracs (a b r R : ) (ha : a > 0) (hb : b > 0) (hr : r > 0) (hR : R > 0) (h_le : a / r / b 1 / R) :
      R * a r * b
      theorem lem_nonneg_product_with_real_abs (r M : ) (hr : r > 0) (hM : M > 0) :
      0 r * (2 * |M|)
      theorem lem_f_bound_rearranged (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (r : ) (hr_pos : r > 0) (hr_lt_R : r < R) (z : ) (hz_on_boundary : z = r) :
      R * f z r * 2 * M - f z
      theorem lem_final_bound_on_circle0 (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (r : ) (hr_pos : r > 0) (hr_lt_R : r < R) (z : ) (hz_on_boundary : z = r) :
      f z 2 * r / (R - r) * M
      theorem lem_final_bound_on_circle (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (r : ) (hr_pos : r > 0) (hr_lt_R : r < R) (z : ) (hz_on_boundary : z = r) :
      f z 2 * r / (R - r) * M
      theorem lem_BCI (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (r : ) (hr_pos : r > 0) (hr_lt_R : r < R) (z : ) (hz_in_ball : z r) :
      f z 2 * r / (R - r) * M
      theorem thm_BorelCaratheodoryI (R M : ) (hR : R > 0) (hM : M > 0) (f : ) (h_analytic : AnalyticOn f (closure (ballDR R))) (h_zero : f 0 = 0) (h_re_bound : zclosure (ballDR R), (f z).re M) (r : ) (hr_pos : r > 0) (hr_lt_R : r < R) :
      sSup (norm f '' closure (ballDR r)) 2 * r / (R - r) * M
      def I :
      Equations
      Instances For
        theorem cauchy_formula_deriv {f : } {R_analytic r_z r_int : } (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        deriv f z = (1 / (2 * Real.pi * I)) (w : ) in C(0, r_int), (w - z)⁻¹ ^ 2 f w
        theorem lem_dw_dt {r_int : } (t : ) :
        deriv (fun (t' : ) => r_int * Complex.exp (I * t')) t = I * r_int * Complex.exp (I * t)
        theorem circleMap_zero_eq_exp (r t : ) :
        circleMap 0 r t = r * Complex.exp (I * t)
        theorem lem_dw_dt_real {r_int : } (t : ) :
        deriv (fun (t' : ) => r_int * Complex.exp (I * t')) t = I * r_int * Complex.exp (I * t)
        theorem deriv_circleMap_zero (r t : ) :
        deriv (circleMap 0 r) t = I * r * Complex.exp (I * t)
        theorem lem_CIF_deriv_param {f : } {R_analytic r_z r_int : } (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        deriv f z = 1 / (2 * Real.pi * I) * (t : ) in Set.Icc 0 (2 * Real.pi), I * r_int * Complex.exp (I * t) * (r_int * Complex.exp (I * t) - z)⁻¹ ^ 2 * f (r_int * Complex.exp (I * t))
        theorem mul_comm_div_cancel (a b : ) (ha : a 0) (hb : b 0) :
        a * b / (b * a) = 1
        theorem complex_coeff_I_cancel :
        1 / (2 * Real.pi * I) * I = 1 / (2 * Real.pi)
        theorem factor_I_from_integrand (f : ) (r_int : ) (z : ) :
        (t : ) in Set.Icc 0 (2 * Real.pi), I * r_int * Complex.exp (I * t) * (r_int * Complex.exp (I * t) - z)⁻¹ ^ 2 * f (r_int * Complex.exp (I * t)) = I * (t : ) in Set.Icc 0 (2 * Real.pi), r_int * Complex.exp (I * t) * (r_int * Complex.exp (I * t) - z)⁻¹ ^ 2 * f (r_int * Complex.exp (I * t))
        theorem integrand_transform_div (f : ) (r_int : ) (z : ) (t : ) :
        r_int * Complex.exp (I * t) * (r_int * Complex.exp (I * t) - z)⁻¹ ^ 2 * f (r_int * Complex.exp (I * t)) = r_int * Complex.exp (I * t) * f (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2
        theorem lem_CIF_deriv_simplified {f : } {R_analytic r_z r_int : } (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        deriv f z = 1 / (2 * Real.pi) * (t : ) in Set.Icc 0 (2 * Real.pi), r_int * Complex.exp (I * t) * f (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2
        theorem lem_modulus_of_f_prime0 {f : } {R_analytic r_z r_int : } (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        deriv f z = 1 / (2 * Real.pi) * (t : ) in Set.Icc 0 (2 * Real.pi), r_int * Complex.exp (I * t) * f (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2
        theorem abs_integral_le_integral_abs {a b : } {g : } (hab : a b) :
        (t : ) in Set.Icc a b, g t (t : ) in Set.Icc a b, g t
        theorem abs_ofReal_mul_complex (c : ) (z : ) (hc : c 0) :
        c * z = c * z
        theorem complex_abs_ofReal_nonneg (r : ) (hr : r 0) :
        r = r
        theorem lem_integral_modulus_inequality {r_int : } {z : } {f : } :
        1 / (2 * Real.pi) * (t : ) in Set.Icc 0 (2 * Real.pi), r_int * Complex.exp (I * t) * f (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2 1 / (2 * Real.pi) * (t : ) in Set.Icc 0 (2 * Real.pi), r_int * Complex.exp (I * t) * f (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2
        theorem lem_modulus_of_f_prime {f : } {R_analytic r_z r_int : } (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        deriv f z 1 / (2 * Real.pi) * (t : ) in Set.Icc 0 (2 * Real.pi), r_int * Complex.exp (I * t) * f (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2
        theorem lem_modulus_of_integrand_product2 {f : } {R_analytic r_z r_int : } (t : ) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) :
        f (r_int * Complex.exp (I * t)) * (r_int * Complex.exp (I * t)) = f (r_int * Complex.exp (I * t)) * r_int * Complex.exp (I * t)
        theorem lem_modeit (t : ) :
        theorem lem_Reit0 (t : ) :
        (I * t).re = 0
        theorem lem_eReite0 (t : ) :
        Real.exp (I * t).re = Real.exp 0
        theorem lem_e01 :
        theorem lem_eReit1 (t : ) :
        Real.exp (I * t).re = 1
        theorem lem_modulus_of_ae_it {a t : } (ha : 0 < a) :
        a * Complex.exp (I * t) = a
        theorem lem_modulus_of_integrand_product3 {f : } {R_analytic r_z r_int : } (t : ) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) :
        f (r_int * Complex.exp (I * t)) * (r_int * Complex.exp (I * t)) = r_int * f (r_int * Complex.exp (I * t))
        theorem lem_modulus_wz (w z : ) :
        (w - z) ^ 2 = w - z ^ 2
        theorem lem_reverse_triangle2 {R_analytic r_z r_int t : } {z : } (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) :
        r_int * Complex.exp (I * t) - z r_int * Complex.exp (I * t) - z
        theorem lem_reverse_triangle3 {R_analytic r_z r_int t : } {z : } (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) :
        r_int - z r_int * Complex.exp (I * t) - z
        theorem lem_zrr1 {R_analytic r_z r_int : } (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        0 < r_int - z
        theorem lem_zrr2 {R_analytic r_z r_int t : } {z : } (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) (hz : z Metric.closedBall 0 r_z) :
        r_int - r_z r_int * Complex.exp (I * t) - z
        theorem lem_rr11 {r r' : } (h_r_pos : 0 < r) (h_r_lt_r_prime : r < r') :
        r' - r > 0
        theorem lem_rr12 {r r' : } (h_r_pos : 0 < r) (h_r_lt_r_prime : r < r') :
        (r' - r) ^ 2 > 0
        theorem lem_zrr3 {R_analytic r_z r_int t : } {z : } (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) (hz : z Metric.closedBall 0 r_z) :
        (r_int - r_z) ^ 2 r_int * Complex.exp (I * t) - z ^ 2
        theorem lem_zrr4 {R_analytic r_z r_int : } (t : ) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        (r_int * Complex.exp (I * t) - z) ^ 2 = r_int * Complex.exp (I * t) - z ^ 2
        theorem lem_reverse_triangle4 {R_analytic r_z r_int t : } {z : } (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) (hz : z Metric.closedBall 0 r_z) :
        0 < r_int * Complex.exp (I * t) - z
        theorem lem_wposneq0 (w : ) :
        w > 0w 0
        theorem lem_reverse_triangle5 {R_analytic r_z r_int : } (t : ) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        r_int * Complex.exp (I * t) - z 0
        theorem lem_reverse_triangle6 {R_analytic r_z r_int : } (t : ) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        (r_int * Complex.exp (I * t) - z) ^ 2 0
        theorem lem_absdiv {a b : } (hb : b 0) :
        theorem lem_modulus_of_integrand_product {f : } {R_analytic r_z r_int : } (t : ) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        f (r_int * Complex.exp (I * t)) * (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2 = f (r_int * Complex.exp (I * t)) * (r_int * Complex.exp (I * t)) / r_int * Complex.exp (I * t) - z ^ 2
        theorem lem_modulus_of_product {f : } {R_analytic r_z r_int : } (t : ) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        f (r_int * Complex.exp (I * t)) * (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2 = r_int * f (r_int * Complex.exp (I * t)) / r_int * Complex.exp (I * t) - z ^ 2
        theorem lem_modulus_of_product2 {f : } {R_analytic r_z r_int : } (t : ) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        f (r_int * Complex.exp (I * t)) * (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2 = r_int * f (r_int * Complex.exp (I * t)) / r_int * Complex.exp (I * t) - z ^ 2
        theorem lem_modulus_of_product3 {f : } {R_analytic r_z r_int : } (t : ) (hf : DifferentiableOn f (Metric.closedBall 0 R_analytic)) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        r_int * f (r_int * Complex.exp (I * t)) / r_int * Complex.exp (I * t) - z ^ 2 r_int * f (r_int * Complex.exp (I * t)) / (r_int - r_z) ^ 2
        theorem lem_modulus_of_product4 {f : } {R_analytic r_z r_int : } (t : ) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) {z : } (hz : z Metric.closedBall 0 r_z) :
        f (r_int * Complex.exp (I * t)) * (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2 r_int * f (r_int * Complex.exp (I * t)) / (r_int - r_z) ^ 2
        theorem lem_bound_on_f_at_r_prime {M R_analytic r_int : } (hM_pos : 0 < M) (hR_analytic_pos : 0 < R_analytic) (hr_int_pos : 0 < r_int) (hr_int_lt_R_analytic : r_int < R_analytic) (f : ) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (hf0 : f 0 = 0) (hRe_f_le_M : zMetric.closedBall 0 R_analytic, (f z).re M) (t : ) :
        f (r_int * Complex.exp (I * t)) 2 * r_int * M / (R_analytic - r_int)
        theorem lem_bound_on_integrand_modulus {f : } {M R_analytic r_z r_int : } (hM_pos : 0 < M) (hR_analytic_pos : 0 < R_analytic) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (hf0 : f 0 = 0) (hRe_f_le_M : wMetric.closedBall 0 R_analytic, (f w).re M) {z : } (hz : z Metric.closedBall 0 r_z) (t : ) :
        f (r_int * Complex.exp (I * t)) * (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2 2 * r_int ^ 2 * M / ((R_analytic - r_int) * (r_int - r_z) ^ 2)
        theorem lem_integral_inequality_aux {g : } {C a b : } (hab : a b) (h_integrable : IntervalIntegrable g MeasureTheory.volume a b) (h_bound : tSet.Icc a b, g t C) :
        (t : ) in a..b, g t (t : ) in a..b, C
        theorem lem_integral_inequality {g : } {C a b : } (hab : a b) (h_integrable : IntervalIntegrable g MeasureTheory.volume a b) (h_bound : tSet.Icc a b, g t C) :
        (t : ) in Set.Icc a b, g t (t : ) in Set.Icc a b, C
        theorem continuous_real_parameterization (r : ) :
        Continuous fun (t : ) => r * Complex.exp (I * t)
        theorem continuous_f_parameterized {f : } {R r : } (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R U DifferentiableOn f U) (hr_pos : 0 < r) (hr_lt_R : r < R) :
        Continuous fun (t : ) => f (r * Complex.exp (I * t))
        theorem continuous_denominator_parameterized (r : ) (z : ) :
        Continuous fun (t : ) => (r * Complex.exp (I * t) - z) ^ 2
        theorem interval_integrable_cauchy_integrand {f : } {R_analytic r_z r_int : } {z : } (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) (hz : z Metric.closedBall 0 r_z) :
        IntervalIntegrable (fun (t : ) => r_int * Complex.exp (I * t) * f (r_int * Complex.exp (I * t)) / (r_int * Complex.exp (I * t) - z) ^ 2) MeasureTheory.volume 0 (2 * Real.pi)
        theorem lem_f_prime_bound_by_integral_of_constant {f : } {M R_analytic r_z r_int : } (hM_pos : 0 < M) (hR_analytic_pos : 0 < R_analytic) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (hf0 : f 0 = 0) (hRe_f_le_M : wMetric.closedBall 0 R_analytic, (f w).re M) {z : } (hz : z Metric.closedBall 0 r_z) :
        deriv f z 2 * r_int ^ 2 * M / ((R_analytic - r_int) * (r_int - r_z) ^ 2)
        theorem lem_integral_2 :
        1 / (2 * Real.pi) * (t : ) in Set.Icc 0 (2 * Real.pi), 1 = 1
        theorem lem_f_prime_bound {f : } {M R_analytic r_z r_int : } (hM_pos : 0 < M) (hR_analytic_pos : 0 < R_analytic) (h_r_z_pos : 0 < r_z) (h_r_z_lt_r_int : r_z < r_int) (h_r_int_lt_R_analytic : r_int < R_analytic) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R_analytic U DifferentiableOn f U) (hf0 : f 0 = 0) (hRe_f_le_M : wMetric.closedBall 0 R_analytic, (f w).re M) {z : } (hz : z Metric.closedBall 0 r_z) :
        deriv f z 2 * r_int ^ 2 * M / ((R_analytic - r_int) * (r_int - r_z) ^ 2)
        theorem lem_r_prime_gt_r {r R : } (h_r_pos : 0 < r) (h_r_lt_R : r < R) :
        r < (r + R) / 2
        theorem lem_r_prime_lt_R {r R : } (h_r_pos : 0 < r) (h_r_lt_R : r < R) :
        (r + R) / 2 < R
        theorem lem_r_prime_is_intermediate {r R : } (h_r_pos : 0 < r) (h_r_lt_R : r < R) :
        r < (r + R) / 2 (r + R) / 2 < R
        theorem lem_calc_R_minus_r_prime {r R : } (h_r_pos : 0 < r) (h_r_lt_R : r < R) :
        R - (r + R) / 2 = (R - r) / 2
        theorem lem_calc_r_prime_minus_r {r R : } (h_r_pos : 0 < r) (h_r_lt_R : r < R) :
        (r + R) / 2 - r = (R - r) / 2
        theorem lem_calc_denominator_specific {r R : } (h_r_pos : 0 < r) (h_r_lt_R : r < R) :
        (R - (r + R) / 2) * ((r + R) / 2 - r) ^ 2 = (R - r) ^ 3 / 8
        theorem lem_calc_numerator_specific {M r R : } (hM_pos : 0 < M) (hr_pos : 0 < r) (hr_lt_R : r < R) :
        2 * ((r + R) / 2) ^ 2 * M = (R + r) ^ 2 * M / 2
        theorem lem_frac_simplify {M r R : } (hM_pos : 0 < M) (hr_pos : 0 < r) (hr_lt_R : r < R) :
        let r_prime := (r + R) / 2; 2 * r_prime ^ 2 * M / ((R - r_prime) * (r_prime - r) ^ 2) = (R + r) ^ 2 * M / 2 / ((R - r) ^ 3 / 8)
        theorem lem_frac_simplify2 {M r R : } (hM_pos : 0 < M) (hr_pos : 0 < r) (hr_lt_R : r < R) :
        (R + r) ^ 2 * M / 2 / ((R - r) ^ 3 / 8) = 4 * (R + r) ^ 2 * M / (R - r) ^ 3
        theorem lem_frac_simplify3 {M r R : } (hM_pos : 0 < M) (hr_pos : 0 < r) (hr_lt_R : r < R) :
        let r_prime := (r + R) / 2; 2 * r_prime ^ 2 * M / ((R - r_prime) * (r_prime - r) ^ 2) = 4 * (R + r) ^ 2 * M / (R - r) ^ 3
        theorem lem_ineq_R_plus_r_lt_2R {r R : } (h_r_lt_R : r < R) :
        R + r < 2 * R
        theorem lem_R_plus_r_is_positive {r R : } (hr_pos : 0 < r) (hr_lt_R : r < R) :
        0 < R + r
        theorem lem_2R_is_positive {R : } (hR_pos : 0 < R) :
        0 < 2 * R
        theorem lem_square_inequality_strict {a b : } (h_a_pos : 0 < a) (h_a_lt_b : a < b) :
        a ^ 2 < b ^ 2
        theorem lem_ineq_R_plus_r_sq_lt_2R_sq {r R : } (hr_pos : 0 < r) (hr_lt_R : r < R) :
        (R + r) ^ 2 < (2 * R) ^ 2
        theorem lem_2R_sq_is_4R_sq {R : } (hR_pos : 0 < R) :
        (2 * R) ^ 2 = 4 * R ^ 2
        theorem lem_ineq_R_plus_r_sq {r R : } (hr_pos : 0 < r) (hr_lt_R : r < R) :
        (R + r) ^ 2 < 4 * R ^ 2
        theorem lem_ineq_R_plus_r_sqM {M r R : } (hM_pos : 0 < M) (hr_pos : 0 < r) (hr_lt_R : r < R) :
        4 * (R + r) ^ 2 * M < 16 * R ^ 2 * M
        theorem lem_simplify_final_bound {M r R : } (hM_pos : 0 < M) (hr_pos : 0 < r) (hr_lt_R : r < R) :
        4 * (R + r) ^ 2 * M / (R - r) ^ 3 < 16 * R ^ 2 * M / (R - r) ^ 3
        theorem lem_bound_after_substitution {M r R : } (hM_pos : 0 < M) (hr_pos : 0 < r) (hr_lt_R : r < R) :
        let r_prime := (r + R) / 2; 2 * r_prime ^ 2 * M / ((R - r_prime) * (r_prime - r) ^ 2) 16 * R ^ 2 * M / (R - r) ^ 3
        theorem borel_caratheodory_II {f : } {R M r : } (hR_pos : 0 < R) (hM_pos : 0 < M) (hr_pos : 0 < r) (hr_lt_R : r < R) (hf_domain : ∃ (U : Set ), IsOpen U Metric.closedBall 0 R U DifferentiableOn f U) (hf0 : f 0 = 0) (hRe_f_le_M : wMetric.closedBall 0 R, (f w).re M) {z : } (hz : z Metric.closedBall 0 r) :
        deriv f z 16 * M * R ^ 2 / (R - r) ^ 3
        noncomputable def If_taxicab {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) (f : ) (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) :
        (Metric.closedBall 0 r1)

        Definition 1: I_f defined along the taxicab (axis-aligned) path.

        Equations
        Instances For
          theorem def_If_z_plus_h {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) :
          If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z + h, hzh = ( (t : ) in 0 ..(z + h).re, f t) + Complex.I * (τ : ) in 0 ..(z + h).im, f ((z + h).re + Complex.I * τ)

          Lemma: I_f(z+h) expands by definition.

          theorem def_If_z {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z : } (hz : z Metric.closedBall 0 r1) :
          If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z, hz = ( (t : ) in 0 ..z.re, f t) + Complex.I * (τ : ) in 0 ..z.im, f (z.re + Complex.I * τ)

          Lemma: I_f(z) expands by definition.

          theorem def_If_w {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          let w := (z + h).re + Complex.I * z.im; If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf w, hw = ( (t : ) in 0 ..(z + h).re, f t) + Complex.I * (τ : ) in 0 ..z.im, f ((z + h).re + Complex.I * τ)

          Lemma: I_f(w) with w := (z+h).re + i*z.im.

          theorem continuous_vertical_line (a : ) :
          Continuous fun (τ : ) => a.re + Complex.I * τ
          theorem norm_re_add_I_mul_le_norm (a : ) {τ : } ( : |τ| |a.im|) :
          theorem abs_le_abs_of_mem_uIcc_zero {b t : } (ht : t Set.uIcc 0 b) :
          theorem vertical_intervalIntegrable_of_mem_ball {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {a : } (ha : a Metric.closedBall 0 r1) :
          IntervalIntegrable (fun (τ : ) => f (a.re + Complex.I * τ)) MeasureTheory.volume 0 a.im
          theorem helper_im_of_w (z h : ) :
          ((z + h).re + Complex.I * z.im).im = z.im
          theorem helper_re_of_w (z h : ) :
          ((z + h).re + Complex.I * z.im).re = (z + h).re
          theorem diff_If_zh_w {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          let w := (z + h).re + Complex.I * z.im; If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z + h, hzh - If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf w, hw = Complex.I * (τ : ) in z.im..(z + h).im, f ((z + h).re + Complex.I * τ)

          Lemma: I_f(z+h) - I_f(w) equals the vertical integral piece.

          theorem diff_If_w_z_initial_form_vertical {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          let w := (z + h).re + Complex.I * z.im; If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z + h, hzh - If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf w, hw = Complex.I * (τ : ) in z.im..(z + h).im, f ((z + h).re + Complex.I * τ)
          theorem diff_If_w_z_initial_form {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          let w := (z + h).re + Complex.I * z.im; If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf w, hw - If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z, hz = ( (t : ) in z.re..w.re, f t) + Complex.I * (τ : ) in 0 ..z.im, f (w.re + Complex.I * τ) - f (z.re + Complex.I * τ)
          theorem scalar_mul_integral_sub {a b : } (c : ) (f g : ) (hf : IntervalIntegrable f MeasureTheory.volume a b) (hg : IntervalIntegrable g MeasureTheory.volume a b) :
          (c * (x : ) in a..b, f x) - c * (x : ) in a..b, g x = c * (x : ) in a..b, f x - g x
          theorem algebraic_rearrangement_four_terms (a b c d : ) :
          a - b + c - d = 0c - d = b - a
          theorem real_between_as_convex_combination (b₁ b₂ t : ) (h : b₁ t t b₂ b₂ t t b₁) :
          ∃ (lam : ), 0 lam lam 1 t = (1 - lam) * b₁ + lam * b₂
          theorem convex_combination_mem_segment {E : Type u_1} [AddCommGroup E] [Module E] (x y : E) (t : ) (h₀ : 0 t) (h₁ : t 1) :
          (1 - t) x + t y segment x y
          theorem vertical_line_in_segment (a : ) (b₁ b₂ t : ) (h : b₁ t t b₂ b₂ t t b₁) :
          a + Complex.I * t segment (a + Complex.I * b₁) (a + Complex.I * b₂)
          theorem horizontal_line_in_segment (a b₁ b₂ t : ) (h : b₁ t t b₂ b₂ t t b₁) :
          t + Complex.I * a segment (b₁ + Complex.I * a) (b₂ + Complex.I * a)
          theorem intervalIntegrable_of_continuousOn_range (f : ) (g : ) (a b : ) (S : Set ) (hf : ContinuousOn f S) (hg : Continuous g) (hrange : tSet.uIcc a b, g t S) :
          theorem intervalIntegrable_of_analyticOnNhd_of_endpoints_in_smaller_ball {r1 R : } (hr1_lt_R : r1 < R) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {a : } {b₁ b₂ : } (h₁ : a + Complex.I * b₁ r1) (h₂ : a + Complex.I * b₂ r1) :
          IntervalIntegrable (fun (t : ) => f (a + Complex.I * t)) MeasureTheory.volume b₁ b₂
          theorem cauchy_for_rectangles {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z w : } (hz : z Metric.closedBall 0 r1) (hw : w Metric.closedBall 0 r1) (hzw : w.re + Complex.I * z.im Metric.closedBall 0 r1) (hwz : z.re + Complex.I * w.im Metric.closedBall 0 r1) :
          ((( (x : ) in z.re..w.re, f (x + Complex.I * z.im)) - (x : ) in z.re..w.re, f (x + Complex.I * w.im)) + Complex.I * (y : ) in z.im..w.im, f (w.re + Complex.I * y)) - Complex.I * (y : ) in z.im..w.im, f (z.re + Complex.I * y) = 0

          Cauchy–Goursat for rectangles with mixed-corner hypotheses ensuring containment.

          theorem cauchy_for_horizontal_strip {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          ((( (t : ) in z.re..(z + h).re, f t) - (t : ) in z.re..(z + h).re, f (t + Complex.I * z.im)) + Complex.I * (τ : ) in 0 ..z.im, f ((z + h).re + Complex.I * τ)) - Complex.I * (τ : ) in 0 ..z.im, f (z.re + Complex.I * τ) = 0

          Horizontal-strip Cauchy identity specialized to w := (z+h).re + i z.im.

          theorem integrability_from_cauchy_horizontal_strip {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          IntervalIntegrable (fun (τ : ) => f ((z + h).re + Complex.I * τ)) MeasureTheory.volume 0 z.im IntervalIntegrable (fun (τ : ) => f (z.re + Complex.I * τ)) MeasureTheory.volume 0 z.im
          theorem cauchy_rearrangement_step1 {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          Complex.I * (τ : ) in 0 ..z.im, f ((z + h).re + Complex.I * τ) - f (z.re + Complex.I * τ) = ( (t : ) in z.re..(z + h).re, f (t + Complex.I * z.im)) - (t : ) in z.re..(z + h).re, f t
          theorem diff_If_w_z {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          let w := (z + h).re + Complex.I * z.im; If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf w, hw - If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z, hz = (t : ) in z.re..(z + h).re, f (t + Complex.I * z.im)
          theorem If_difference_is_L_path_integral {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z + h, hzh - If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z, hz = ( (t : ) in z.re..(z + h).re, f (t + Complex.I * z.im)) + Complex.I * (τ : ) in z.im..(z + h).im, f ((z + h).re + Complex.I * τ)

          Sum of the two differences gives the L-shaped path integral from z to z+h.

          theorem If_diff_add_sub_identity {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z + h, hzh - If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z, hz = ( (t : ) in z.re..(z + h).re, f (t + Complex.I * z.im) - f z + f z) + Complex.I * (τ : ) in z.im..(z + h).im, f ((z + h).re + Complex.I * τ) - f z + f z

          Add–subtract f z inside each integrand (pure algebra).

          theorem intervalIntegrable_of_analyticOnNhd_of_horizontal_endpoints_in_smaller_ball {r1 R : } (hr1_lt_R : r1 < R) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {im_part a b : } (h₁ : a + Complex.I * im_part r1) (h₂ : b + Complex.I * im_part r1) :
          IntervalIntegrable (fun (t : ) => f (t + Complex.I * im_part)) MeasureTheory.volume a b
          theorem If_diff_linearity {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
          If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z + h, hzh - If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z, hz = (( (t : ) in z.re..(z + h).re, f (t + Complex.I * z.im) - f z) + (t : ) in z.re..(z + h).re, f z) + Complex.I * (( (τ : ) in z.im..(z + h).im, f ((z + h).re + Complex.I * τ) - f z) + (τ : ) in z.im..(z + h).im, f z)

          Apply linearity of the integral to split the two addends.

          theorem integral_of_constant_over_L_path {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) :
          ( (t : ) in z.re..(z + h).re, f z) + Complex.I * (τ : ) in z.im..(z + h).im, f z = f z * h

          Integrating the constant function along the L-path yields f z * h.

          noncomputable def Err {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) (f : ) (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) (z h : ) :

          Final decomposition with an explicit error term.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem CD_eq_fz_h {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) :
            ( (t : ) in z.re..(z + h).re, f z) + Complex.I * (τ : ) in z.im..(z + h).im, f z = f z * h
            theorem If_diff_decomposition_final {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
            If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z + h, hzh - If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z, hz = f z * h + Err hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z h
            noncomputable def S_horiz (z h : ) (f : ) :
            Equations
            Instances For
              noncomputable def S_vert (z h : ) (f : ) :
              Equations
              Instances For
                noncomputable def S_max (z h : ) (f : ) :
                Equations
                Instances For
                  theorem bound_on_Err {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) :
                  Err hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z h |h.re| * S_max z h f + |h.im| * S_max z h f
                  theorem S_horiz_nonneg (z h : ) (f : ) :
                  0 S_horiz z h f
                  theorem S_max_nonneg (z h : ) (f : ) :
                  0 S_max z h f
                  theorem bound_on_Err_ratio {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hz : z Metric.closedBall 0 r1) (hzh : z + h Metric.closedBall 0 r1) (hw : (z + h).re + Complex.I * z.im Metric.closedBall 0 r1) (hh : h 0) :
                  Err hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z h / h 2 * S_max z h f
                  theorem abs_horizontal_diff_eq_abs_real (z : ) (t : ) :
                  t + Complex.I * z.im - z = |t - z.re|
                  theorem abs_sub_le_of_mem_uIcc (a b t : ) (ht : t Set.uIcc a b) :
                  |t - a| |b - a| |b - t| |b - a|
                  theorem sub_ofReal_add_I (a b c d : ) :
                  a + Complex.I * b - (c + Complex.I * d) = ↑(a - c) + Complex.I * (b - d)
                  theorem abs_re_im_bound (a b : ) :
                  a + Complex.I * b |a| + |b|
                  theorem norm_ofReal (x : ) :
                  x = |x|
                  theorem abs_add_Ile (a b : ) :
                  a + Complex.I * b |a| + |b|
                  theorem abs_vertical_diff_le_core (z h : ) (τ : ) :
                  ↑((z + h).re - z.re) + Complex.I * (τ - z.im) |(z + h).re - z.re| + |τ - z.im|
                  theorem abs_vertical_core (z h : ) (τ : ) :
                  h.re + Complex.I * (τ - z.im) |h.re| + |τ - z.im|
                  theorem S_vert_nonneg (z h : ) (f : ) :
                  0 S_vert z h f
                  theorem mem_closedBall_mono_radius {z : } {r R : } (hz : z Metric.closedBall 0 r) (h : r R) :
                  theorem tendsto_of_nonneg_local_bound {g : } (h_nonneg : ∀ (h : ), 0 g h) (h_loc : ε > 0, δ > 0, ∀ (h : ), h < δg h ε) :
                  theorem sum_abs_le_two_mul {x y A : } (hx : |x| A) (hy : |y| A) :
                  |x| + |y| 2 * A
                  theorem two_norm_lt_of_norm_lt_half {h : } {δ : } (_hpos : 0 < δ) (hbound : h < δ / 2) :
                  2 * h < δ
                  theorem limit_of_S_is_zero {r1 R R0 : } (_hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (_hR_lt_R0 : R < R0) (_hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z : } (hz : z Metric.closedBall 0 r1) :
                  Filter.Tendsto (fun (h : ) => S_max z h f) (nhds 0) (nhds 0)
                  theorem limit_of_Err_ratio_is_zero {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z : } (hz : z Metric.closedBall 0 r1) :
                  Filter.Tendsto (fun (h : ) => Err hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf z h / h) (nhds 0) (nhds 0)
                  noncomputable def If_ext {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) (f : ) (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) :

                  Extend If_taxicab to a total function on by zero outside the closed ball.

                  Equations
                  Instances For
                    theorem If_ext_eq_taxicab_of_mem {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) (f : ) (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {w : } (hw : w Metric.closedBall 0 r1) :
                    If_ext hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf w = If_taxicab hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf w, hw
                    theorem If_taxicab_param_invariance {r1₁ r1₂ R R0 : } (hr1₁_pos : 0 < r1₁) (hr1₁_lt_R : r1₁ < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) (hr1₂_pos : 0 < r1₂) (hr1₂_lt_R : r1₂ < R) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {w : } (hw₁ : w Metric.closedBall 0 r1₁) (hw₂ : w Metric.closedBall 0 r1₂) :
                    If_taxicab hr1₁_pos hr1₁_lt_R hR_lt_R0 hR0_lt_one f hf w, hw₁ = If_taxicab hr1₂_pos hr1₂_lt_R hR_lt_R0 hR0_lt_one f hf w, hw₂
                    theorem derivWithin_eq_deriv_of_isOpen_mem {s : Set } (hs : IsOpen s) {f : } {z : } (hz : z s) :
                    derivWithin f s z = deriv f z
                    theorem eventually_decomposition_for_ext {R' R R0 : } (hR'_pos : 0 < R') (hR'_lt_R : R' < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) (z : ) (hz : z < R') :
                    ∀ᶠ (h : ) in nhds 0, let g := If_ext hR'_pos hR'_lt_R hR_lt_R0 hR0_lt_one f hf; g (z + h) - g z = f z * h + Err hR'_pos hR'_lt_R hR_lt_R0 hR0_lt_one f hf z h
                    theorem tendsto_Err_ratio_radius (R' R R0 : ) (hR'_pos : 0 < R') (hR'_lt_R : R' < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z : } (hz : z < R') :
                    Filter.Tendsto (fun (h : ) => Err hR'_pos hR'_lt_R hR_lt_R0 hR0_lt_one f hf z h / h) (nhds 0) (nhds 0)
                    theorem If_ext_eq_taxicab_at_sum {R' R R0 : } (hR'_pos : 0 < R') (hR'_lt_R : R' < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z h : } (hzh : z + h Metric.closedBall 0 R') :
                    If_ext hR'_pos hR'_lt_R hR_lt_R0 hR0_lt_one f hf (z + h) = If_taxicab hR'_pos hR'_lt_R hR_lt_R0 hR0_lt_one f hf z + h, hzh
                    theorem If_ext_eq_taxicab_at_point {R' R R0 : } (hR'_pos : 0 < R') (hR'_lt_R : R' < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) {z : } (hz : z Metric.closedBall 0 R') :
                    If_ext hR'_pos hR'_lt_R hR_lt_R0 hR0_lt_one f hf z = If_taxicab hR'_pos hR'_lt_R hR_lt_R0 hR0_lt_one f hf z, hz
                    theorem hasDerivWithinAt_congr_eqOn {f g : } {s : Set } {z f' : } (hEq : Set.EqOn f g s) (hz : z s) :
                    HasDerivWithinAt g f' s zHasDerivWithinAt f f' s z
                    theorem differentiableOn_of_hasDerivWithinAt {f : } {s : Set } {F : } (h : zs, HasDerivWithinAt f (F z) s z) :
                    theorem If_ext_agree_on_smallBall {r1 R' R R0 : } (hr1_pos : 0 < r1) (hR'_pos : 0 < R') (hr1_lt_R : r1 < R) (hR'_lt_R : R' < R) (hr1_lt_R' : r1 < R') (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) :
                    Set.EqOn (If_ext hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf) (If_ext hR'_pos hR'_lt_R hR_lt_R0 hR0_lt_one f hf) (Metric.closedBall 0 r1)
                    theorem hasDerivAt_of_local_decomposition' (g : ) (z F : ) (Err_func : ) (hdecomp : ∀ᶠ (h : ) in nhds 0, g (z + h) - g z = F * h + Err_func h) (hErr : Filter.Tendsto (fun (h : ) => Err_func h / h) (nhds 0) (nhds 0)) :
                    theorem uniqueDiffWithinAt_convex_complex {s : Set } (hconv : Convex s) (hs : (interior s).Nonempty) {x : } (hx : x closure s) :
                    theorem If_is_differentiable_on {r1 R R0 : } (hr1_pos : 0 < r1) (hr1_lt_R : r1 < R) (hR_lt_R0 : R < R0) (hR0_lt_one : R0 < 1) {f : } (hf : AnalyticOnNhd f (Metric.closedBall 0 R)) :
                    DifferentiableOn (If_ext hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf) (Metric.closedBall 0 r1) zMetric.closedBall 0 r1, derivWithin (If_ext hr1_pos hr1_lt_R hR_lt_R0 hR0_lt_one f hf) (Metric.closedBall 0 r1) z = f z
                    theorem AnalyticOnNhd.mono_closedBall {B : } {R : } (R' : ) (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hR' : R' < R) :
                    theorem log_deriv_is_analytic {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R')) (hB_ne_zero : zMetric.closedBall 0 r1, B z 0) :
                    AnalyticOnNhd (fun (z : ) => deriv B z / B z) (Metric.closedBall 0 r1)

                    Lemma: B'/B is analyticOnNhd when B is analyticOnNhd and nonzero.

                    theorem I_is_antiderivative {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) :
                    ∃ (J : ), AnalyticOnNhd J (Metric.closedBall 0 r1) J 0 = 0 zMetric.closedBall 0 r1, deriv J z = deriv B z / B z

                    Lemma: There exists J analyticOnNhd with J(0) = 0 and J'(z) = B'(z)/B(z).

                    noncomputable def H_auxiliary {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) (J : ) :

                    Definition: H(z) := exp(J(z))/B(z) where J is from I_is_antiderivative.

                    Equations
                    Instances For
                      theorem exp_I_at_zero {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) :
                      Complex.exp (J 0) = 1

                      Lemma: exp(J(0)) = 1 when J(0) = 0.

                      theorem H_at_zero {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) :
                      H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J 0 = 1 / B 0

                      Lemma: H(0) = 1/B(0).

                      theorem log_deriv_id {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1deriv J z * B z = deriv B z

                      Lemma: J'(z)B(z) = B'(z).

                      theorem log_deriv_identity {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1deriv J z * B z - deriv B z = 0

                      Lemma: J'(z)B(z) - B'(z) = 0.

                      theorem H_derivative_quotient_rule {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1deriv (H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J) z = (deriv (fun (w : ) => Complex.exp (J w)) z * B z - deriv B z * Complex.exp (J z)) / B z ^ 2

                      Lemma: Derivative of H(z) using quotient rule.

                      theorem exp_I_derivative_chain_rule {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1deriv (fun (w : ) => Complex.exp (J w)) z = deriv J z * Complex.exp (J z)
                      theorem H_derivative_calc {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1deriv (H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J) z = (deriv J z * B z - deriv B z) * Complex.exp (J z) / B z ^ 2
                      theorem H_derivative_is_zero {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1deriv (H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J) z = 0
                      theorem H_deriv_zero_on_closedBall {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1deriv (H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J) z = 0
                      theorem H_auxiliary_differentiableOn_closedBall {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) :
                      DifferentiableOn (H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J) (Metric.closedBall 0 r1)
                      theorem hasDerivAt_H_auxiliary_zero_on_closedBall {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1HasDerivAt (H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J) 0 z
                      theorem fderivWithin_eq_zero_of_derivWithin_eq_zero {s : Set } {f : } {x : } (hdiff : DifferentiableWithinAt f s x) (hderiv : derivWithin f s x = 0) :
                      theorem hasDerivWithinAt_of_hasDerivAt {f : } {s : Set } {x : } (h : HasDerivAt f 0 x) :
                      theorem H_auxiliary_fderivWithin_zero_on_closedBall {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1fderivWithin (H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J) (Metric.closedBall 0 r1) z = 0
                      theorem H_is_constant {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J z = H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J 0

                      Lemma: H is constant on the closed ball.

                      theorem H_is_one {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1H_auxiliary hr1_pos hr1_lt_R' hR'_lt_R hR_lt_one hB hB_ne_zero J z = 1 / B 0
                      theorem analytic_log_exists {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1B z = B 0 * Complex.exp (J z)

                      Lemma: B(z) = B(0) * exp(J(z)).

                      theorem modulus_of_exp_I {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      theorem modulus_of_B_product_form {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :

                      Lemma: |B(z)| = |B(0)| * |exp(J(z))|.

                      theorem modulus_of_exp_log {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :
                      z Metric.closedBall 0 r1B z = B 0 * Real.exp (J z).re

                      Lemma: |B(z)| = |B(0)| * exp(Re(J(z))).

                      theorem log_modulus_as_sum {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :

                      Lemma: log|B(z)| = log|B(0)| + log(exp(Re(J(z)))).

                      theorem real_log_of_modulus_difference {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) {J : } (hJ : AnalyticOnNhd J (Metric.closedBall 0 r1)) (hJ_zero : J 0 = 0) (hJ_deriv : zMetric.closedBall 0 r1, deriv J z = deriv B z / B z) (z : ) :

                      Lemma: log|B(z)| - log|B(0)| = Re(J(z)).

                      theorem log_of_analytic {r1 R' R : } (hr1_pos : 0 < r1) (hr1_lt_R' : r1 < R') (hR'_lt_R : R' < R) (hR_lt_one : R < 1) {B : } (hB : AnalyticOnNhd B (Metric.closedBall 0 R)) (hB_ne_zero : zMetric.closedBall 0 R', B z 0) :
                      ∃ (J_B : ), AnalyticOnNhd J_B (Metric.closedBall 0 r1) J_B 0 = 0 (∀ zMetric.closedBall 0 r1, deriv J_B z = deriv B z / B z) zMetric.closedBall 0 r1, Real.log B z - Real.log B 0 = (J_B z).re