Documentation

PrimeNumberTheoremAnd.Wiener

theorem smooth_urysohn_support_Ioo {a b c d : } (h1 : a < b) (h3 : c < d) :
∃ (Ψ : ), ContDiff (↑) Ψ HasCompactSupport Ψ (Set.Icc b c).indicator 1 Ψ Ψ (Set.Ioo a d).indicator 1 Function.support Ψ = Set.Ioo a d
noncomputable def nterm (f : ) (σ' : ) (n : ) :
Equations
Instances For
    theorem nterm_eq_norm_term {n : } {σ' : } {f : } :
    nterm f σ' n = LSeries.term f (↑σ') n
    theorem norm_term_eq_nterm_re {n : } {f : } (s : ) :
    theorem hf_coe1 {σ' : } {f : } (hf : ∀ (σ' : ), 1 < σ'Summable (nterm f σ')) ( : 1 < σ') :
    ∑' (i : ), LSeries.term f (↑σ') i‖₊
    theorem first_fourier_aux1 {ψ : } ( : AEMeasurable ψ MeasureTheory.volume) {x : } (n : ) :
    theorem first_fourier_aux2a {n : } {x y : } :
    2 * Real.pi * -(y * (1 / (2 * Real.pi) * (Real.log (n / x)))) = -(y * (Real.log (n / x)))
    theorem first_fourier_aux2 {x y σ' : } {ψ : } {f : } (hx : 0 < x) (n : ) :
    LSeries.term f (↑σ') n * Real.fourierChar (-(y * (1 / (2 * Real.pi) * Real.log (n / x)))) ψ y = LSeries.term f (σ' + y * Complex.I) n (ψ y * x ^ (y * Complex.I))
    theorem first_fourier {x σ' : } {ψ : } {f : } (hf : ∀ (σ' : ), 1 < σ'Summable (nterm f σ')) (hsupp : MeasureTheory.Integrable ψ MeasureTheory.volume) (hx : 0 < x) ( : 1 < σ') :
    ∑' (n : ), LSeries.term f (↑σ') n * Real.fourierIntegral ψ (1 / (2 * Real.pi) * Real.log (n / x)) = (t : ), LSeries f (σ' + t * Complex.I) * ψ t * x ^ (t * Complex.I)
    theorem second_fourier_integrable_aux1a {x σ' : } ( : 1 < σ') :
    theorem second_fourier_integrable_aux2 {x t σ' : } ( : 1 < σ') :
    theorem second_fourier_aux {x t σ' : } (hx : 0 < x) :
    -(Complex.exp (-((1 - σ' - t * Complex.I) * (Real.log x))) / (1 - σ' - t * Complex.I)) = ↑(x ^ (σ' - 1)) * (σ' + t * Complex.I - 1)⁻¹ * x ^ (t * Complex.I)
    theorem second_fourier {ψ : } (hcont : Continuous ψ) (hsupp : MeasureTheory.Integrable ψ MeasureTheory.volume) {x σ' : } (hx : 0 < x) ( : 1 < σ') :
    (u : ) in Set.Ici (-Real.log x), (Real.exp (-u * (σ' - 1))) * Real.fourierIntegral ψ (u / (2 * Real.pi)) = ↑(x ^ (σ' - 1)) * (t : ), 1 / (σ' + t * Complex.I - 1) * ψ t * x ^ (t * Complex.I)
    theorem one_add_sq_pos (u : ) :
    0 < 1 + u ^ 2
    theorem decay_bounds_aux {A : } {f : } (hf : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume) (h : ∀ (t : ), f t A * (1 + t ^ 2)⁻¹) :
    (t : ), f t Real.pi * A
    theorem decay_bounds_W21 {A : } (f : W21) (hA : ∀ (t : ), f.toFun t A / (1 + t ^ 2)) (hA' : ∀ (t : ), deriv (deriv f.toFun) t A / (1 + t ^ 2)) (u : ) :
    theorem decay_bounds {A u : } (ψ : CS 2 ) (hA : ∀ (t : ), ψ.toFun t A / (1 + t ^ 2)) (hA' : ∀ (t : ), deriv^[2] ψ.toFun t A / (1 + t ^ 2)) :
    theorem decay_bounds_cor_aux (ψ : CS 2 ) :
    ∃ (C : ), ∀ (u : ), ψ.toFun u C / (1 + u ^ 2)
    theorem decay_bounds_cor (ψ : W21) :
    ∃ (C : ), ∀ (u : ), Real.fourierIntegral ψ.toFun u C / (1 + u ^ 2)
    theorem continuous_LSeries_aux {σ' : } {f : } (hf : Summable (nterm f σ')) :
    Continuous fun (x : ) => LSeries f (σ' + x * Complex.I)
    theorem limiting_fourier_aux {A x : } {G : } {f : } (hG' : Set.EqOn G (fun (s : ) => LSeries f s - A / (s - 1)) {s : | 1 < s.re}) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm f σ')) (ψ : CS 2 ) (hx : 1 x) (σ' : ) (hσ' : 1 < σ') :
    ∑' (n : ), LSeries.term f (↑σ') n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x)) - A * ↑(x ^ (1 - σ')) * (u : ) in Set.Ici (-Real.log x), (Real.exp (-u * (σ' - 1))) * Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)) = (t : ), G (σ' + t * Complex.I) * ψ.toFun t * x ^ (t * Complex.I)
    def cumsum {E : Type u_2} [AddCommMonoid E] (u : E) (n : ) :
    E
    Equations
    Instances For
      def nabla {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Sub E] (u : αE) (n : α) :
      E
      Equations
      Instances For
        def nnabla {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Sub E] (u : αE) (n : α) :
        E
        Equations
        Instances For
          def shift {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] (u : αE) (n : α) :
          E
          Equations
          Instances For
            @[simp]
            theorem cumsum_zero {E : Type u_2} [AddCommMonoid E] {u : E} :
            cumsum u 0 = 0
            theorem cumsum_succ {E : Type u_2} [AddCommMonoid E] {u : E} (n : ) :
            cumsum u (n + 1) = cumsum u n + u n
            @[simp]
            theorem nabla_cumsum {E : Type u_2} [AddCommGroup E] {u : E} :
            nabla (cumsum u) = u
            theorem neg_cumsum {E : Type u_2} [AddCommGroup E] {u : E} :
            theorem cumsum_nonneg {u : } (hu : 0 u) :
            theorem neg_nabla {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Ring E] {u : αE} :
            @[simp]
            theorem nabla_mul {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Ring E] {u : αE} {c : E} :
            (nabla fun (n : α) => c * u n) = c nabla u
            @[simp]
            theorem nnabla_mul {α : Type u_1} {E : Type u_2} [OfNat α 1] [Add α] [Ring E] {u : αE} {c : E} :
            (nnabla fun (n : α) => c * u n) = c nnabla u
            theorem nnabla_cast {E : Type u_2} (u : E) [Sub E] :
            theorem Finset.sum_shift_front {E : Type u_1} [Ring E] {u : E} {n : } :
            cumsum u (n + 1) = u 0 + cumsum (shift u) n
            theorem Finset.sum_shift_front' {E : Type u_1} [Ring E] {u : E} :
            shift (cumsum u) = (fun (x : ) => u 0) + cumsum (shift u)
            theorem Finset.sum_shift_back {E : Type u_1} [Ring E] {u : E} {n : } :
            cumsum u (n + 1) = cumsum u n + u n
            theorem Finset.sum_shift_back' {E : Type u_1} [Ring E] {u : E} :
            theorem summation_by_parts {E : Type u_1} [Ring E] {a A b : E} (ha : a = nabla A) {n : } :
            cumsum (a * b) (n + 1) = A (n + 1) * b n - A 0 * b 0 - cumsum (shift A * fun (i : ) => b (i + 1) - b i) n
            theorem summation_by_parts' {E : Type u_1} [Ring E] {a b : E} {n : } :
            cumsum (a * b) (n + 1) = cumsum a (n + 1) * b n - cumsum (shift (cumsum a) * nabla b) n
            theorem summation_by_parts'' {E : Type u_1} [Ring E] {a b : E} :
            shift (cumsum (a * b)) = shift (cumsum a) * b - cumsum (shift (cumsum a) * nabla b)
            theorem Filter.EventuallyEq.summable {u v : } (h : u =ᶠ[atTop] v) (hu : Summable v) :
            theorem dirichlet_test' {a b : } (ha : 0 a) (hb : 0 b) (hAb : Filter.atTop.BoundedAtFilter (shift (cumsum a) * b)) (hbb : ∀ᶠ (n : ) in Filter.atTop, b (n + 1) b n) (h : Summable (shift (cumsum a) * nnabla b)) :
            Summable (a * b)
            theorem exists_antitone_of_eventually {u : } (hu : ∀ᶠ (n : ) in Filter.atTop, u (n + 1) u n) :
            theorem summable_inv_mul_log_sq :
            Summable fun (n : ) => (n * Real.log n ^ 2)⁻¹
            theorem tendsto_mul_add_atTop {a : } (ha : 0 < a) (b : ) :
            theorem isLittleO_const_of_tendsto_atTop {α : Type u_1} [Preorder α] (a : ) {f : α} (hf : Filter.Tendsto f Filter.atTop Filter.atTop) :
            (fun (x : α) => a) =o[Filter.atTop] f
            theorem isBigO_pow_pow_of_le {m n : } (h : m n) :
            (fun (x : ) => x ^ m) =O[Filter.atTop] fun (x : ) => x ^ n
            theorem isLittleO_mul_add_sq (a b : ) :
            (fun (x : ) => a * x + b) =o[Filter.atTop] fun (x : ) => x ^ 2
            theorem log_mul_add_isBigO_log {a : } (ha : 0 < a) (b : ) :
            (fun (x : ) => Real.log (a * x + b)) =O[Filter.atTop] Real.log
            theorem isBigO_log_mul_add {a : } (ha : 0 < a) (b : ) :
            Real.log =O[Filter.atTop] fun (x : ) => Real.log (a * x + b)
            theorem log_isbigo_log_div {d : } (hb : 0 < d) :
            (fun (n : ) => Real.log n) =O[Filter.atTop] fun (n : ) => Real.log (n / d)
            theorem Asymptotics.IsBigO.sq {α : Type u_1} [Preorder α] {f g : α} (h : f =O[Filter.atTop] g) :
            (fun (n : α) => f n ^ 2) =O[Filter.atTop] fun (n : α) => g n ^ 2
            theorem log_sq_isbigo_mul {a b : } (hb : 0 < b) :
            (fun (x : ) => Real.log x ^ 2) =O[Filter.atTop] fun (x : ) => a + Real.log (x / b) ^ 2
            theorem log_add_div_isBigO_log (a : ) {b : } (hb : 0 < b) :
            (fun (x : ) => Real.log ((x + a) / b)) =O[Filter.atTop] fun (x : ) => Real.log x
            theorem nabla_log {b : } (hb : 0 < b) :
            (nabla fun (x : ) => Real.log (x / b)) =O[Filter.atTop] fun (x : ) => 1 / x
            theorem nnabla_mul_log_sq (a : ) {b : } (hb : 0 < b) :
            (nabla fun (x : ) => x * (a + Real.log (x / b) ^ 2)) =O[Filter.atTop] fun (x : ) => Real.log x ^ 2
            theorem nnabla_bound_aux1 (a : ) {b : } (hb : 0 < b) :
            Filter.Tendsto (fun (x : ) => x * (a + Real.log (x / b) ^ 2)) Filter.atTop Filter.atTop
            theorem nnabla_bound_aux2 (a : ) {b : } (hb : 0 < b) :
            ∀ᶠ (x : ) in Filter.atTop, 0 < x * (a + Real.log (x / b) ^ 2)
            theorem norm_lt_norm_of_nonneg (x y : ) (hx : 0 x) (hxy : x y) :

            Should this be a gcongr lemma?

            theorem nnabla_bound_aux {x : } (hx : 0 < x) :
            (nnabla fun (n : ) => 1 / (n * ((2 * Real.pi) ^ 2 + Real.log (n / x) ^ 2))) =O[Filter.atTop] fun (n : ) => 1 / (Real.log n ^ 2 * n ^ 2)
            theorem nnabla_bound (C : ) {x : } (hx : 0 < x) :
            (nnabla fun (n : ) => C / (1 + (Real.log (n / x) / (2 * Real.pi)) ^ 2) / n) =O[Filter.atTop] fun (n : ) => (n ^ 2 * Real.log n ^ 2)⁻¹
            def chebyWith (C : ) (f : ) :
            Equations
            Instances For
              def cheby (f : ) :
              Equations
              Instances For
                theorem cheby.bigO {f : } (h : cheby f) :
                theorem limiting_fourier_lim1_aux {x : } {f : } (hcheby : cheby f) (hx : 0 < x) (C : ) (hC : 0 C) :
                Summable fun (n : ) => f n / n * (C / (1 + (1 / (2 * Real.pi) * Real.log (n / x)) ^ 2))
                theorem limiting_fourier_lim1 {x : } {f : } (hcheby : cheby f) (ψ : W21) (hx : 0 < x) :
                Filter.Tendsto (fun (σ' : ) => ∑' (n : ), LSeries.term f (↑σ') n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x))) (nhdsWithin 1 (Set.Ioi 1)) (nhds (∑' (n : ), f n / n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x))))
                theorem limiting_fourier_lim2 {x : } (A : ) (ψ : W21) (hx : 1 x) :
                Filter.Tendsto (fun (σ' : ) => A * ↑(x ^ (1 - σ')) * (u : ) in Set.Ici (-Real.log x), (Real.exp (-u * (σ' - 1))) * Real.fourierIntegral ψ.toFun (u / (2 * Real.pi))) (nhdsWithin 1 (Set.Ioi 1)) (nhds (A * (u : ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi))))
                theorem limiting_fourier_lim3 {x : } {G : } (hG : ContinuousOn G {s : | 1 s.re}) (ψ : CS 2 ) (hx : 1 x) :
                Filter.Tendsto (fun (σ' : ) => (t : ), G (σ' + t * Complex.I) * ψ.toFun t * x ^ (t * Complex.I)) (nhdsWithin 1 (Set.Ioi 1)) (nhds ( (t : ), G (1 + t * Complex.I) * ψ.toFun t * x ^ (t * Complex.I)))
                theorem limiting_fourier {A x : } {G : } {f : } (hcheby : cheby f) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries f s - A / (s - 1)) {s : | 1 < s.re}) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm f σ')) (ψ : CS 2 ) (hx : 1 x) :
                ∑' (n : ), f n / n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x)) - A * (u : ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)) = (t : ), G (1 + t * Complex.I) * ψ.toFun t * x ^ (t * Complex.I)
                theorem limiting_cor_aux {f : } :
                Filter.Tendsto (fun (x : ) => (t : ), f t * x ^ (t * Complex.I)) Filter.atTop (nhds 0)
                theorem limiting_cor {A : } {G : } {f : } (ψ : CS 2 ) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries f s - A / (s - 1)) {s : | 1 < s.re}) :
                Filter.Tendsto (fun (x : ) => ∑' (n : ), f n / n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x)) - A * (u : ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi))) Filter.atTop (nhds 0)
                theorem smooth_urysohn (a b c d : ) (h1 : a < b) (h3 : c < d) :
                ∃ (Ψ : ), ContDiff (↑) Ψ HasCompactSupport Ψ (Set.Icc b c).indicator 1 Ψ Ψ (Set.Ioo a d).indicator 1
                noncomputable def exists_trunc :
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem one_div_sub_one (n : ) :
                  1 / ↑(n - 1) 2 / n
                  theorem quadratic_pos (a b c x : ) (ha : 0 < a) ( : discrim a b c < 0) :
                  0 < a * x ^ 2 + b * x + c
                  noncomputable def pp (a x : ) :
                  Equations
                  Instances For
                    noncomputable def pp' (a x : ) :
                    Equations
                    Instances For
                      theorem pp_pos {a : } (ha : a Set.Ioo (-1) 1) (x : ) :
                      0 < pp a x
                      theorem pp_deriv (a x : ) :
                      HasDerivAt (pp a) (pp' a x) x
                      theorem pp_deriv_eq (a : ) :
                      deriv (pp a) = pp' a
                      theorem pp'_deriv (a x : ) :
                      HasDerivAt (pp' a) (a ^ 2 * 2) x
                      theorem pp'_deriv_eq (a : ) :
                      deriv (pp' a) = fun (x : ) => a ^ 2 * 2
                      noncomputable def hh (a t : ) :
                      Equations
                      Instances For
                        noncomputable def hh' (a t : ) :
                        Equations
                        Instances For
                          theorem hh_nonneg (a : ) {t : } (ht : 0 t) :
                          0 hh a t
                          theorem hh_le (a t : ) (ht : 0 t) :
                          theorem hh_deriv (a : ) {t : } (ht : t 0) :
                          HasDerivAt (hh a) (hh' a t) t
                          theorem hh'_nonpos {a x : } (ha : a Set.Ioo (-1) 1) :
                          hh' a x 0
                          theorem hh_antitone {a : } (ha : a Set.Ioo (-1) 1) :
                          noncomputable def gg (x i : ) :
                          Equations
                          Instances For
                            theorem gg_of_hh {x : } (hx : x 0) (i : ) :
                            gg x i = x⁻¹ * hh (1 / (2 * Real.pi)) (i / x)
                            theorem gg_l1 {x : } (hx : 0 < x) (n : ) :
                            |gg x n| 1 / n
                            theorem gg_le_one {x : } (i : ) :
                            gg x i 1
                            theorem sum_telescopic (a : ) (n : ) :
                            iFinset.range n, (a (i + 1) - a i) = a n - a 0
                            theorem cancel_aux {C : } {f g : } (hf : 0 f) (hg : 0 g) (hf' : ∀ (n : ), cumsum f n C * n) (hg' : Antitone g) (n : ) :
                            iFinset.range n, f i * g i g (n - 1) * (C * n) + (C * (↑(n - 1 - 1) + 1) * g 0 - C * (↑(n - 1 - 1) + 1) * g (n - 1) - ((n - 1 - 1) (C * g 0) - xFinset.range (n - 1 - 1), C * g (x + 1)))
                            theorem sum_range_succ (a : ) (n : ) :
                            iFinset.range n, a (i + 1) = iFinset.range (n + 1), a i - a 0
                            theorem cancel_aux' {C : } {f g : } (hf : 0 f) (hg : 0 g) (hf' : ∀ (n : ), cumsum f n C * n) (hg' : Antitone g) (n : ) :
                            iFinset.range n, f i * g i C * n * g (n - 1) + C * cumsum g (n - 1 - 1 + 1) - C * (↑(n - 1 - 1) + 1) * g (n - 1)
                            theorem cancel_main {C : } {f g : } (hf : 0 f) (hg : 0 g) (hf' : ∀ (n : ), cumsum f n C * n) (hg' : Antitone g) (n : ) (hn : 2 n) :
                            cumsum (f * g) n C * cumsum g n
                            theorem cancel_main' {C : } {f g : } (hf : 0 f) (hf0 : f 0 = 0) (hg : 0 g) (hf' : ∀ (n : ), cumsum f n C * n) (hg' : Antitone g) (n : ) :
                            cumsum (f * g) n C * cumsum g n
                            theorem sum_le_integral {x₀ : } {f : } {n : } (hf : AntitoneOn f (Set.Ioc x₀ (x₀ + n))) (hfi : MeasureTheory.IntegrableOn f (Set.Icc x₀ (x₀ + n)) MeasureTheory.volume) :
                            iFinset.range n, f (x₀ + ↑(i + 1)) (x : ) in x₀..x₀ + n, f x
                            theorem hh_integrable_aux {a b c : } (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) :
                            MeasureTheory.IntegrableOn (fun (t : ) => a * hh b (t / c)) (Set.Ici 0) MeasureTheory.volume (t : ) in Set.Ioi 0, a * hh b (t / c) = a * c / b * Real.pi
                            theorem hh_integrable {a b c : } (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) :
                            theorem hh_integral {a b c : } (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) :
                            (t : ) in Set.Ioi 0, a * hh b (t / c) = a * c / b * Real.pi
                            theorem hh_integral' :
                            (t : ) in Set.Ioi 0, hh (1 / (2 * Real.pi)) t = 2 * Real.pi ^ 2
                            theorem bound_sum_log {f : } {C : } (hf0 : f 0 = 0) (hf : chebyWith C f) {x : } (hx : 1 x) :
                            ∑' (i : ), f i / i * (1 + (1 / (2 * Real.pi) * Real.log (i / x)) ^ 2)⁻¹ C * (1 + (t : ) in Set.Ioi 0, hh (1 / (2 * Real.pi)) t)
                            theorem bound_sum_log0 {f : } {C : } (hf : chebyWith C f) {x : } (hx : 1 x) :
                            ∑' (i : ), f i / i * (1 + (1 / (2 * Real.pi) * Real.log (i / x)) ^ 2)⁻¹ C * (1 + (t : ) in Set.Ioi 0, hh (1 / (2 * Real.pi)) t)
                            theorem bound_sum_log' {f : } {C : } (hf : chebyWith C f) {x : } (hx : 1 x) :
                            ∑' (i : ), f i / i * (1 + (1 / (2 * Real.pi) * Real.log (i / x)) ^ 2)⁻¹ C * (1 + 2 * Real.pi ^ 2)
                            theorem summable_fourier {f : } (x : ) (hx : 0 < x) (ψ : W21) (hcheby : cheby f) :
                            Summable fun (i : ) => f i / i * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (i / x))
                            theorem bound_I1 {f : } (x : ) (hx : 0 < x) (ψ : W21) (hcheby : cheby f) :
                            ∑' (n : ), f n / n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x)) W21.norm ψ.toFun ∑' (i : ), f i / i * (1 + (1 / (2 * Real.pi) * Real.log (i / x)) ^ 2)⁻¹
                            theorem bound_I1' {f : } {C : } (x : ) (hx : 1 x) (ψ : W21) (hcheby : chebyWith C f) :
                            ∑' (n : ), f n / n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x)) W21.norm ψ.toFun * C * (1 + 2 * Real.pi ^ 2)
                            theorem bound_main {f : } {C : } (A : ) (x : ) (hx : 1 x) (ψ : W21) (hcheby : chebyWith C f) :
                            ∑' (n : ), f n / n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x)) - A * (u : ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)) W21.norm ψ.toFun * (C * (1 + 2 * Real.pi ^ 2) + A * (2 * Real.pi ^ 2))
                            theorem limiting_cor_W21 {A : } {G : } {f : } (ψ : W21) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries f s - A / (s - 1)) {s : | 1 < s.re}) :
                            Filter.Tendsto (fun (x : ) => ∑' (n : ), f n / n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x)) - A * (u : ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi))) Filter.atTop (nhds 0)
                            theorem limiting_cor_schwartz {A : } {G : } {f : } (ψ : SchwartzMap ) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries f s - A / (s - 1)) {s : | 1 < s.re}) :
                            Filter.Tendsto (fun (x : ) => ∑' (n : ), f n / n * Real.fourierIntegral (⇑ψ) (1 / (2 * Real.pi) * Real.log (n / x)) - A * (u : ) in Set.Ici (-Real.log x), Real.fourierIntegral (⇑ψ) (u / (2 * Real.pi))) Filter.atTop (nhds 0)
                            noncomputable def toSchwartz (f : ) (h1 : ContDiff (↑) f) (h2 : HasCompactSupport f) :
                            Equations
                            • toSchwartz f h1 h2 = { toFun := f, smooth' := h1, decay' := }
                            Instances For
                              @[simp]
                              theorem toSchwartz_apply (f : ) {h1 : ContDiff (↑) f} {h2 : ∀ (k n : ), ∃ (C : ), ∀ (x : ), x ^ k * iteratedFDeriv n f x C} {x : } :
                              { toFun := f, smooth' := h1, decay' := h2 } x = f x
                              theorem comp_exp_support0 {Ψ : } (hplus : closure (Function.support Ψ) Set.Ioi 0) :
                              ∀ᶠ (x : ) in nhds 0, Ψ x = 0
                              theorem comp_exp_support1 {Ψ : } (hplus : closure (Function.support Ψ) Set.Ioi 0) :
                              theorem comp_exp_support2 {Ψ : } (hsupp : HasCompactSupport Ψ) :
                              theorem wiener_ikehara_smooth_aux {Ψ : } (l0 : Continuous Ψ) (hsupp : HasCompactSupport Ψ) (hplus : closure (Function.support Ψ) Set.Ioi 0) (x : ) (hx : 0 < x) :
                              (u : ) in Set.Ioi (-Real.log x), (Real.exp u) * Ψ (Real.exp u) = (y : ) in Set.Ioi (1 / x), Ψ y
                              theorem wiener_ikehara_smooth_sub {A : } {Ψ : } (h1 : MeasureTheory.Integrable Ψ MeasureTheory.volume) (hplus : closure (Function.support Ψ) Set.Ioi 0) :
                              Filter.Tendsto (fun (x : ) => (A * (y : ) in Set.Ioi x⁻¹, Ψ y) - A * (y : ) in Set.Ioi 0, Ψ y) Filter.atTop (nhds 0)
                              theorem wiener_ikehara_smooth {A : } {Ψ : } {G : } {f : } (hf : ∀ (σ' : ), 1 < σ'Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries f s - A / (s - 1)) {s : | 1 < s.re}) (hsmooth : ContDiff (↑) Ψ) (hsupp : HasCompactSupport Ψ) (hplus : closure (Function.support Ψ) Set.Ioi 0) :
                              Filter.Tendsto (fun (x : ) => (∑' (n : ), f n * Ψ (n / x)) / x - A * (y : ) in Set.Ioi 0, Ψ y) Filter.atTop (nhds 0)
                              theorem wiener_ikehara_smooth' {A : } {Ψ : } {G : } {f : } (hf : ∀ (σ' : ), 1 < σ'Summable (nterm f σ')) (hcheby : cheby f) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries f s - A / (s - 1)) {s : | 1 < s.re}) (hsmooth : ContDiff (↑) Ψ) (hsupp : HasCompactSupport Ψ) (hplus : closure (Function.support Ψ) Set.Ioi 0) :
                              Filter.Tendsto (fun (x : ) => (∑' (n : ), f n * Ψ (n / x)) / x) Filter.atTop (nhds (A * (y : ) in Set.Ioi 0, Ψ y))
                              Equations
                              Instances For
                                theorem set_integral_ofReal {f : } {s : Set } :
                                (x : ) in s, (f x) = ( (x : ) in s, f x)
                                theorem wiener_ikehara_smooth_real {A : } {G : } {f : } {Ψ : } (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (hcheby : cheby fun (n : ) => (f n)) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) (hsmooth : ContDiff (↑) Ψ) (hsupp : HasCompactSupport Ψ) (hplus : closure (Function.support Ψ) Set.Ioi 0) :
                                Filter.Tendsto (fun (x : ) => (∑' (n : ), f n * Ψ (n / x)) / x) Filter.atTop (nhds (A * (y : ) in Set.Ioi 0, Ψ y))
                                theorem interval_approx_inf {a b : } (ha : 0 < a) (hab : a < b) :
                                ∀ᶠ (ε : ) in nhdsWithin 0 (Set.Ioi 0), ∃ (ψ : ), ContDiff (↑) ψ HasCompactSupport ψ closure (Function.support ψ) Set.Ioi 0 ψ (Set.Ico a b).indicator 1 b - a - ε (y : ) in Set.Ioi 0, ψ y
                                theorem interval_approx_sup {a b : } (ha : 0 < a) (hab : a < b) :
                                ∀ᶠ (ε : ) in nhdsWithin 0 (Set.Ioi 0), ∃ (ψ : ), ContDiff (↑) ψ HasCompactSupport ψ closure (Function.support ψ) Set.Ioi 0 (Set.Ico a b).indicator 1 ψ (y : ) in Set.Ioi 0, ψ y b - a + ε
                                theorem WI_summable {x : } {f : } {g : } (hg : HasCompactSupport g) (hx : 0 < x) :
                                Summable fun (n : ) => f n * g (n / x)
                                theorem WI_sum_le {x : } {f : } {g₁ g₂ : } (hf : 0 f) (hg : g₁ g₂) (hx : 0 < x) (hg₁ : HasCompactSupport g₁) (hg₂ : HasCompactSupport g₂) :
                                (∑' (n : ), f n * g₁ (n / x)) / x (∑' (n : ), f n * g₂ (n / x)) / x
                                theorem WI_sum_Iab_le {a b x : } {f : } (hpos : 0 f) {C : } (hcheby : chebyWith C fun (n : ) => (f n)) (hb : 0 < b) (hxb : 2 / b < x) :
                                (∑' (n : ), f n * (Set.Ico a b).indicator 1 (n / x)) / x C * 2 * b
                                theorem WI_sum_Iab_le' {a b : } {f : } (hpos : 0 f) {C : } (hcheby : chebyWith C fun (n : ) => (f n)) (hb : 0 < b) :
                                ∀ᶠ (x : ) in Filter.atTop, (∑' (n : ), f n * (Set.Ico a b).indicator 1 (n / x)) / x C * 2 * b
                                theorem le_of_eventually_nhdsWithin {a b : } (h : ∀ᶠ (c : ) in nhdsWithin b (Set.Ioi b), a c) :
                                a b
                                theorem ge_of_eventually_nhdsWithin {a b : } (h : ∀ᶠ (c : ) in nhdsWithin b (Set.Iio b), c a) :
                                b a
                                theorem WI_tendsto_aux (a b : ) {A : } (hA : 0 < A) :
                                Filter.Tendsto (fun (c : ) => c / A - (b - a)) (nhdsWithin (A * (b - a)) (Set.Ioi (A * (b - a)))) (nhdsWithin 0 (Set.Ioi 0))
                                theorem WI_tendsto_aux' (a b : ) {A : } (hA : 0 < A) :
                                Filter.Tendsto (fun (c : ) => b - a - c / A) (nhdsWithin (A * (b - a)) (Set.Iio (A * (b - a)))) (nhdsWithin 0 (Set.Ioi 0))
                                theorem residue_nonneg {A : } {G : } {f : } (hpos : 0 f) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (hcheby : cheby fun (n : ) => (f n)) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) :
                                0 A
                                theorem WienerIkeharaInterval {A a b : } {G : } {f : } (hpos : 0 f) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (hcheby : cheby fun (n : ) => (f n)) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) (ha : 0 < a) (hb : a b) :
                                Filter.Tendsto (fun (x : ) => (∑' (n : ), f n * (Set.Ico a b).indicator 1 (n / x)) / x) Filter.atTop (nhds (A * (b - a)))
                                theorem le_floor_mul_iff {n : } {b x : } (hb : 0 b) (hx : 0 < x) :
                                n b * x⌋₊ n / x b
                                theorem lt_ceil_mul_iff {n : } {b x : } (hx : 0 < x) :
                                n < b * x⌉₊ n / x < b
                                theorem ceil_mul_le_iff {n : } {a x : } (hx : 0 < x) :
                                a * x⌉₊ n a n / x
                                theorem mem_Icc_iff_div {n : } {a b x : } (hb : 0 b) (hx : 0 < x) :
                                theorem mem_Ico_iff_div {n : } {a b x : } (hx : 0 < x) :
                                theorem tsum_indicator {a b x : } {f : } (hx : 0 < x) :
                                ∑' (n : ), f n * (Set.Ico a b).indicator 1 (n / x) = nFinset.Ico a * x⌉₊ b * x⌉₊, f n
                                theorem WienerIkeharaInterval_discrete {A a b : } {G : } {f : } (hpos : 0 f) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (hcheby : cheby fun (n : ) => (f n)) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) (ha : 0 < a) (hb : a b) :
                                Filter.Tendsto (fun (x : ) => (∑ nFinset.Ico a * x⌉₊ b * x⌉₊, f n) / x) Filter.atTop (nhds (A * (b - a)))
                                theorem WienerIkeharaInterval_discrete' {A a b : } {G : } {f : } (hpos : 0 f) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (hcheby : cheby fun (n : ) => (f n)) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) (ha : 0 < a) (hb : a b) :
                                Filter.Tendsto (fun (N : ) => (∑ nFinset.Ico a * N⌉₊ b * N⌉₊, f n) / N) Filter.atTop (nhds (A * (b - a)))
                                theorem tendsto_mul_ceil_div :
                                Filter.Tendsto (fun (p : × ) => p.1 * p.2⌉₊ / p.2) (nhdsWithin 0 (Set.Ioi 0) ×ˢ Filter.atTop) (nhds 0)

                                A version of the Wiener-Ikehara Tauberian Theorem: If f is a nonnegative arithmetic function whose L-series has a simple pole at s = 1 with residue A and otherwise extends continuously to the closed half-plane re s ≥ 1, then ∑ n < N, f n is asymptotic to A*N.

                                noncomputable def S {𝕜 : Type} [RCLike 𝕜] (f : 𝕜) (ε : ) (N : ) :
                                𝕜
                                Equations
                                Instances For
                                  theorem S_sub_S {𝕜 : Type} [RCLike 𝕜] {f : 𝕜} {ε : } {N : } ( : ε 1) :
                                  S f 0 N - S f ε N = cumsum f ε * N⌉₊ / N
                                  theorem tendsto_S_S_zero {f : } (hpos : 0 f) (hcheby : cheby fun (n : ) => (f n)) :
                                  theorem WienerIkeharaTheorem' {A : } {G : } {f : } (hpos : 0 f) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (hcheby : cheby fun (n : ) => (f n)) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) :
                                  Filter.Tendsto (fun (N : ) => cumsum f N / N) Filter.atTop (nhds A)
                                  theorem limiting_fourier_variant {A x : } {G : } {f : } (hpos : 0 f) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (ψ : CS 2 ) (hψpos : ∀ (y : ), 0 (Real.fourierIntegral ψ.toFun y).re (Real.fourierIntegral ψ.toFun y).im = 0) (hx : 1 x) :
                                  ∑' (n : ), (f n) / n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x)) - A * (u : ) in Set.Ici (-Real.log x), Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)) = (t : ), G (1 + t * Complex.I) * ψ.toFun t * x ^ (t * Complex.I)
                                  theorem crude_upper_bound {A : } {G : } {f : } (hpos : 0 f) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (ψ : CS 2 ) (hψpos : ∀ (y : ), 0 (Real.fourierIntegral ψ.toFun y).re (Real.fourierIntegral ψ.toFun y).im = 0) :
                                  ∃ (B : ), ∀ (x : ), 0 < x∑' (n : ), (f n) / n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (n / x)) B
                                  theorem auto_cheby {A : } {G : } {f : } (hpos : 0 f) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (hG : ContinuousOn G {s : | 1 s.re}) (hG' : Set.EqOn G (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) :
                                  cheby fun (n : ) => (f n)
                                  theorem WienerIkeharaTheorem'' {A : } {F : } {f : } (hpos : 0 f) (hf : ∀ (σ' : ), 1 < σ'Summable (nterm (fun (n : ) => (f n)) σ')) (hG : ContinuousOn F {s : | 1 s.re}) (hG' : Set.EqOn F (fun (s : ) => LSeries (fun (n : ) => (f n)) s - A / (s - 1)) {s : | 1 < s.re}) :
                                  Filter.Tendsto (fun (N : ) => cumsum f N / N) Filter.atTop (nhds A)
                                  theorem WeakPNT_character {q a : } (hq : q 1) (ha : a.Coprime q) (ha' : a < q) {s : } (hs : 1 < s.re) :
                                  LSeries (fun (n : ) => if n % q = a then (ArithmeticFunction.vonMangoldt n) else 0) s = (-∑' (χ : DirichletCharacter q), (starRingEnd ) (χ a) * deriv (LSeries fun (n : ) => χ n) s / LSeries (fun (n : ) => χ n) s) / q.totient