Equations
theorem
first_fourier_aux1
{ψ : ℝ → ℂ}
(hψ : AEMeasurable ψ MeasureTheory.volume)
{x : ℝ}
(n : ℕ)
:
AEMeasurable (fun (u : ℝ) => ‖Real.fourierChar (-(u * (1 / (2 * Real.pi) * Real.log (↑n / x)))) • ψ u‖ₑ)
MeasureTheory.volume
theorem
first_fourier
{x σ' : ℝ}
{ψ : ℝ → ℂ}
{f : ℕ → ℂ}
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ'))
(hsupp : MeasureTheory.Integrable ψ MeasureTheory.volume)
(hx : 0 < x)
(hσ : 1 < σ')
:
theorem
second_fourier_integrable_aux1a
{x σ' : ℝ}
(hσ : 1 < σ')
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => Complex.exp (-(↑x * (↑σ' - 1)))) (Set.Ici (-Real.log x)) MeasureTheory.volume
theorem
second_fourier_integrable_aux1
{x σ' : ℝ}
{ψ : ℝ → ℂ}
(hcont : Continuous ψ)
(hsupp : MeasureTheory.Integrable ψ MeasureTheory.volume)
(hσ : 1 < σ')
:
let ν := (MeasureTheory.volume.restrict (Set.Ici (-Real.log x))).prod MeasureTheory.volume;
MeasureTheory.Integrable
(Function.uncurry fun (u a : ℝ) =>
↑(Real.exp (-u * (σ' - 1))) • ↑(Real.fourierChar (Multiplicative.ofAdd (-(a * (u / (2 * Real.pi)))))) • ψ a)
ν
theorem
second_fourier_integrable_aux2
{x t σ' : ℝ}
(hσ : 1 < σ')
:
MeasureTheory.IntegrableOn (fun (u : ℝ) => Complex.exp ((1 - ↑σ' - ↑t * Complex.I) * ↑u)) (Set.Ioi (-Real.log x))
MeasureTheory.volume
theorem
second_fourier
{ψ : ℝ → ℂ}
(hcont : Continuous ψ)
(hsupp : MeasureTheory.Integrable ψ MeasureTheory.volume)
{x σ' : ℝ}
(hx : 0 < x)
(hσ : 1 < σ')
:
theorem
W21.integrable_fourier
{c : ℝ}
(ψ : W21)
(hc : c ≠ 0)
:
MeasureTheory.Integrable (fun (u : ℝ) => Real.fourierIntegral ψ.toFun (u / c)) MeasureTheory.volume
theorem
limiting_fourier_aux
{A x : ℝ}
{G : ℂ → ℂ}
{f : ℕ → ℂ}
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries f s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ'))
(ψ : CS 2 ℂ)
(hx : 1 ≤ x)
(σ' : ℝ)
(hσ' : 1 < σ')
:
∑' (n : ℕ), LSeries.term f (↑σ') n * Real.fourierIntegral ψ.toFun (1 / (2 * Real.pi) * Real.log (↑n / x)) - ↑A * ↑(x ^ (1 - σ')) * ∫ (u : ℝ) in Set.Ici (-Real.log x), ↑(Real.exp (-u * (σ' - 1))) * Real.fourierIntegral ψ.toFun (u / (2 * Real.pi)) = ∫ (t : ℝ), G (↑σ' + ↑t * Complex.I) * ψ.toFun t * ↑x ^ (↑t * Complex.I)
Equations
- cumsum u n = ∑ i ∈ Finset.range n, u i
Instances For
@[simp]
theorem
tendsto_mul_add_atTop
{a : ℝ}
(ha : 0 < a)
(b : ℝ)
:
Filter.Tendsto (fun (x : ℝ) => a * x + b) Filter.atTop Filter.atTop
theorem
isLittleO_const_of_tendsto_atTop
{α : Type u_1}
[Preorder α]
(a : ℝ)
{f : α → ℝ}
(hf : Filter.Tendsto f Filter.atTop Filter.atTop)
:
theorem
Asymptotics.IsBigO.sq
{α : Type u_1}
[Preorder α]
{f g : α → ℝ}
(h : f =O[Filter.atTop] g)
:
theorem
nnabla_bound_aux1
(a : ℝ)
{b : ℝ}
(hb : 0 < b)
:
Filter.Tendsto (fun (x : ℝ) => x * (a + Real.log (x / b) ^ 2)) Filter.atTop Filter.atTop
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
sum_le_integral
{x₀ : ℝ}
{f : ℝ → ℝ}
{n : ℕ}
(hf : AntitoneOn f (Set.Ioc x₀ (x₀ + ↑n)))
(hfi : MeasureTheory.IntegrableOn f (Set.Icc x₀ (x₀ + ↑n)) MeasureTheory.volume)
:
theorem
hh_integrable
{a b c : ℝ}
(ha : 0 < a)
(hb : 0 < b)
(hc : 0 < c)
:
MeasureTheory.IntegrableOn (fun (t : ℝ) => a * hh b (t / c)) (Set.Ici 0) MeasureTheory.volume
theorem
fourier_surjection_on_schwartz
(f : SchwartzMap ℝ ℂ)
:
∃ (g : SchwartzMap ℝ ℂ), Real.fourierIntegral ⇑g = ⇑f
Equations
- toSchwartz f h1 h2 = { toFun := f, smooth' := h1, decay' := ⋯ }
Instances For
theorem
comp_exp_support
{Ψ : ℝ → ℂ}
(hsupp : HasCompactSupport Ψ)
(hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0)
:
theorem
wiener_ikehara_smooth_sub
{A : ℝ}
{Ψ : ℝ → ℂ}
(h1 : MeasureTheory.Integrable Ψ MeasureTheory.volume)
(hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0)
:
theorem
wiener_ikehara_smooth
{A : ℝ}
{Ψ : ℝ → ℂ}
{G : ℂ → ℂ}
{f : ℕ → ℂ}
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ'))
(hcheby : cheby f)
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries f s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
(hsmooth : ContDiff ℝ (↑⊤) Ψ)
(hsupp : HasCompactSupport Ψ)
(hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0)
:
theorem
wiener_ikehara_smooth'
{A : ℝ}
{Ψ : ℝ → ℂ}
{G : ℂ → ℂ}
{f : ℕ → ℂ}
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm f σ'))
(hcheby : cheby f)
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries f s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
(hsmooth : ContDiff ℝ (↑⊤) Ψ)
(hsupp : HasCompactSupport Ψ)
(hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0)
:
theorem
wiener_ikehara_smooth_real
{A : ℝ}
{G : ℂ → ℂ}
{f : ℕ → ℝ}
{Ψ : ℝ → ℝ}
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun (n : ℕ) => ↑(f n)) σ'))
(hcheby : cheby fun (n : ℕ) => ↑(f n))
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries (fun (n : ℕ) => ↑(f n)) s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
(hsmooth : ContDiff ℝ (↑⊤) Ψ)
(hsupp : HasCompactSupport Ψ)
(hplus : closure (Function.support Ψ) ⊆ Set.Ioi 0)
:
theorem
WI_tendsto_aux
(a b : ℝ)
{A : ℝ}
(hA : 0 < A)
:
Filter.Tendsto (fun (c : ℝ) => c / A - (b - a)) (nhdsWithin (A * (b - a)) (Set.Ioi (A * (b - a))))
(nhdsWithin 0 (Set.Ioi 0))
theorem
WI_tendsto_aux'
(a b : ℝ)
{A : ℝ}
(hA : 0 < A)
:
Filter.Tendsto (fun (c : ℝ) => b - a - c / A) (nhdsWithin (A * (b - a)) (Set.Iio (A * (b - a))))
(nhdsWithin 0 (Set.Ioi 0))
theorem
residue_nonneg
{A : ℝ}
{G : ℂ → ℂ}
{f : ℕ → ℝ}
(hpos : 0 ≤ f)
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun (n : ℕ) => ↑(f n)) σ'))
(hcheby : cheby fun (n : ℕ) => ↑(f n))
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries (fun (n : ℕ) => ↑(f n)) s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
:
theorem
WienerIkeharaInterval
{A a b : ℝ}
{G : ℂ → ℂ}
{f : ℕ → ℝ}
(hpos : 0 ≤ f)
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun (n : ℕ) => ↑(f n)) σ'))
(hcheby : cheby fun (n : ℕ) => ↑(f n))
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries (fun (n : ℕ) => ↑(f n)) s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
(ha : 0 < a)
(hb : a ≤ b)
:
theorem
WienerIkeharaInterval_discrete
{A a b : ℝ}
{G : ℂ → ℂ}
{f : ℕ → ℝ}
(hpos : 0 ≤ f)
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun (n : ℕ) => ↑(f n)) σ'))
(hcheby : cheby fun (n : ℕ) => ↑(f n))
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries (fun (n : ℕ) => ↑(f n)) s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
(ha : 0 < a)
(hb : a ≤ b)
:
Filter.Tendsto (fun (x : ℝ) => (∑ n ∈ Finset.Ico ⌈a * x⌉₊ ⌈b * x⌉₊, f n) / x) Filter.atTop (nhds (A * (b - a)))
theorem
WienerIkeharaInterval_discrete'
{A a b : ℝ}
{G : ℂ → ℂ}
{f : ℕ → ℝ}
(hpos : 0 ≤ f)
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun (n : ℕ) => ↑(f n)) σ'))
(hcheby : cheby fun (n : ℕ) => ↑(f n))
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries (fun (n : ℕ) => ↑(f n)) s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
(ha : 0 < a)
(hb : a ≤ b)
:
Filter.Tendsto (fun (N : ℕ) => (∑ n ∈ Finset.Ico ⌈a * ↑N⌉₊ ⌈b * ↑N⌉₊, f n) / ↑N) Filter.atTop (nhds (A * (b - a)))
theorem
tendsto_mul_ceil_div :
Filter.Tendsto (fun (p : ℝ × ℕ) => ↑⌈p.1 * ↑p.2⌉₊ / ↑p.2) (nhdsWithin 0 (Set.Ioi 0) ×ˢ Filter.atTop) (nhds 0)
A version of the Wiener-Ikehara Tauberian Theorem: If f
is a nonnegative arithmetic
function whose L-series has a simple pole at s = 1
with residue A
and otherwise extends
continuously to the closed half-plane re s ≥ 1
, then ∑ n < N, f n
is asymptotic to A*N
.
theorem
tendsto_S_S_zero
{f : ℕ → ℝ}
(hpos : 0 ≤ f)
(hcheby : cheby fun (n : ℕ) => ↑(f n))
:
TendstoUniformlyOnFilter (S f) (S f 0) (nhdsWithin 0 (Set.Ioi 0)) Filter.atTop
theorem
WienerIkeharaTheorem'
{A : ℝ}
{G : ℂ → ℂ}
{f : ℕ → ℝ}
(hpos : 0 ≤ f)
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun (n : ℕ) => ↑(f n)) σ'))
(hcheby : cheby fun (n : ℕ) => ↑(f n))
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries (fun (n : ℕ) => ↑(f n)) s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
:
Filter.Tendsto (fun (N : ℕ) => cumsum f N / ↑N) Filter.atTop (nhds A)
theorem
WeakPNT :
Filter.Tendsto (fun (N : ℕ) => cumsum (⇑ArithmeticFunction.vonMangoldt) N / ↑N) Filter.atTop (nhds 1)
theorem
limiting_fourier_variant
{A x : ℝ}
{G : ℂ → ℂ}
{f : ℕ → ℝ}
(hpos : 0 ≤ f)
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries (fun (n : ℕ) => ↑(f n)) s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun (n : ℕ) => ↑(f n)) σ'))
(ψ : CS 2 ℂ)
(hψpos : ∀ (y : ℝ), 0 ≤ (Real.fourierIntegral ψ.toFun y).re ∧ (Real.fourierIntegral ψ.toFun y).im = 0)
(hx : 1 ≤ x)
:
theorem
crude_upper_bound
{A : ℝ}
{G : ℂ → ℂ}
{f : ℕ → ℝ}
(hpos : 0 ≤ f)
(hG : ContinuousOn G {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn G (fun (s : ℂ) => LSeries (fun (n : ℕ) => ↑(f n)) s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun (n : ℕ) => ↑(f n)) σ'))
(ψ : CS 2 ℂ)
(hψpos : ∀ (y : ℝ), 0 ≤ (Real.fourierIntegral ψ.toFun y).re ∧ (Real.fourierIntegral ψ.toFun y).im = 0)
:
theorem
WienerIkeharaTheorem''
{A : ℝ}
{F : ℂ → ℂ}
{f : ℕ → ℝ}
(hpos : 0 ≤ f)
(hf : ∀ (σ' : ℝ), 1 < σ' → Summable (nterm (fun (n : ℕ) => ↑(f n)) σ'))
(hG : ContinuousOn F {s : ℂ | 1 ≤ s.re})
(hG' : Set.EqOn F (fun (s : ℂ) => LSeries (fun (n : ℕ) => ↑(f n)) s - ↑A / (s - 1)) {s : ℂ | 1 < s.re})
:
Filter.Tendsto (fun (N : ℕ) => cumsum f N / ↑N) Filter.atTop (nhds A)