Documentation

PrimeNumberTheoremAnd.BrunTitchmarsh

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem BrunTitchmarsh.siftedSum_eq_card (x y z : ) (hz : 1 z) :
    SelbergSieve.siftedSum = {dFinset.Icc x⌉₊ x + y⌋₊ | ∀ (p : ), Nat.Prime pp z¬p d}.card
    theorem BrunTitchmarsh.Ioc_filter_dvd_eq (d a b : ) (hd : d 0) :
    {xFinset.Ioc a b | d x} = Finset.image (fun (x : ) => x * d) (Finset.Ioc (a / d) (b / d))
    theorem BrunTitchmarsh.card_Ioc_filter_dvd (d a b : ) (hd : d 0) :
    {xFinset.Ioc a b | d x}.card = b / d - a / d
    theorem BrunTitchmarsh.multSum_eq (x y z : ) (hx : 0 < x) (hz : 1 z) (d : ) (hd : d 0) :
    theorem BrunTitchmarsh.rem_eq (x y z : ) (hx : 0 < x) (hz : 1 z) (d : ) (hd : d 0) :
    SelbergSieve.rem d = ↑(x + y⌋₊ / d - (x⌉₊ - 1) / d) - (↑d)⁻¹ * y
    theorem BrunTitchmarsh.floor_approx (x : ) (hx : 0 x) :
    ∃ (C : ), |C| 1 x⌋₊ = x + C
    theorem BrunTitchmarsh.ceil_approx (x : ) (hx : 0 x) :
    ∃ (C : ), |C| 1 x⌉₊ = x + C
    theorem BrunTitchmarsh.nat_div_approx (a b : ) :
    ∃ (C : ), |C| 1 ↑(a / b) = a / b + C
    theorem BrunTitchmarsh.floor_div_approx (x : ) (hx : 0 x) (d : ) :
    ∃ (C : ), |C| 2 ↑(x⌋₊ / d) = x / d + C
    theorem BrunTitchmarsh.abs_rem_le (x y z : ) (hx : 0 < x) (hy : 0 < y) (hz : 1 z) {d : } (hd : d 0) :
    theorem BrunTitchmarsh.primeSieve_rem_sum_le (x y z : ) (hx : 0 < x) (hy : 0 < y) (hz : 1 z) :
    theorem BrunTitchmarsh.siftedSum_le (x y z : ) (hx : 0 < x) (hy : 0 < y) (hz : 1 < z) :
    theorem BrunTitchmarsh.primesBetween_le (x y z : ) (hx : 0 < x) (hy : 0 < y) (hz : 1 < z) :
    (primesBetween x (x + y)) 2 * y / Real.log z + 6 * z * (1 + Real.log z) ^ 3
    theorem BrunTitchmarsh.tmp (N : ) :
    (Finset.filter Nat.Prime (Finset.range N)).card 4 * (N / Real.log N) + 6 * (N ^ (1 / 2) * (1 + 1 / 2 * Real.log N) ^ 3)
    theorem BrunTitchmarsh.rpow_mul_rpow_log_isBigO_id_div_log (k : ) {r : } (hr : r < 1) :
    (fun (x : ) => x ^ r * Real.log x ^ k) =O[Filter.atTop] fun (x : ) => x / Real.log x
    theorem BrunTitchmarsh.err_isBigO :
    (fun (x : ) => x ^ (1 / 2) * (1 + 1 / 2 * Real.log x) ^ 3) =O[Filter.atTop] fun (x : ) => x / Real.log x
    theorem BrunTitchmarsh.prime_or_pow (N n : ) (hnN : n < N) (hnprime : IsPrimePow n) :
    Nat.Prime n ∃ (m : ), m < N kNat.log 2 N, n = m ^ k
    theorem BrunTitchmarsh.IsBigO.nat_Top_of_atTop (f g : ) (h : f =O[Filter.atTop] g) (h0 : ∀ (n : ), g n = 0f n = 0) :
    theorem BrunTitchmarsh.pows_small_primes_le (N : ) :
    (Finset.image (fun (p : × ) => p.1 ^ p.2) (Finset.Ico 1 N⌉₊ ×ˢ Finset.range (Nat.log 2 N + 1))).card N ^ (1 / 2) * (1 + Real.log N / Real.log 2)
    theorem BrunTitchmarsh.card_pows_aux :
    (fun (N : ) => (Finset.image (fun (p : × ) => p.1 ^ p.2) (Finset.Ico 1 N⌉₊ ×ˢ Finset.range (Nat.log 2 N + 1))).card) =O[Filter.atTop] fun (N : ) => N / Real.log N