Documentation

PrimeNumberTheoremAnd.Mathlib.Analysis.Asymptotics.Asymptotics

theorem Asymptotics.isLittleO_const_id_cocompact {E'' : Type u_9} {F'' : Type u_10} [NormedAddCommGroup E''] [NormedAddCommGroup F''] [ProperSpace F''] (c : E'') :
(fun (_x : F'') => c) =o[Filter.cocompact F''] id
theorem Asymptotics.isLittleO_const_id_atTop2 {E'' : Type u_9} {F'' : Type u_10} [NormedAddCommGroup E''] [NormedAddCommGroup F''] [LinearOrder F''] [NoMaxOrder F''] [ClosedIciTopology F''] [ProperSpace F''] (c : E'') :
(fun (_x : F'') => c) =o[Filter.atTop] id
theorem Asymptotics.isLittleO_const_id_atBot2 {E'' : Type u_9} {F'' : Type u_10} [NormedAddCommGroup E''] [NormedAddCommGroup F''] [LinearOrder F''] [NoMinOrder F''] [ClosedIicTopology F''] [ProperSpace F''] (c : E'') :
(fun (_x : F'') => c) =o[Filter.atBot] id
theorem Filter.Eventually.natCast {f : Prop} (hf : ∀ᶠ (x : ) in atTop, f x) :
∀ᶠ (n : ) in atTop, f n
theorem Asymptotics.IsBigO.natCast {E : Type u_3} [Norm E] {f g : E} (h : f =O[Filter.atTop] g) :
(fun (n : ) => f n) =O[Filter.atTop] fun (n : ) => g n