theorem
zeroTendstoDiff
(L₁ L₂ : ℂ)
(f : ℝ → ℂ)
(h : ∀ᶠ (T : ℝ) in Filter.atTop, f T = 0)
(h' : Filter.Tendsto f Filter.atTop (nhds (L₂ - L₁)))
:
theorem
RectangleIntegral_tendsTo_VerticalIntegral
{σ σ' : ℝ}
{f : ℂ → ℂ}
(hbot : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atBot (nhds 0))
(htop : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atTop (nhds 0))
(hleft : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ + ↑y * Complex.I)) MeasureTheory.volume)
(hright : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ' + ↑y * Complex.I)) MeasureTheory.volume)
:
Filter.Tendsto (fun (T : ℝ) => RectangleIntegral f (↑σ - Complex.I * ↑T) (↑σ' + Complex.I * ↑T)) Filter.atTop
(nhds (VerticalIntegral f σ' - VerticalIntegral f σ))
theorem
verticalIntegral_eq_verticalIntegral
{σ σ' : ℝ}
{f : ℂ → ℂ}
(hf : HolomorphicOn f (Set.uIcc σ σ' ×ℂ Set.univ))
(hbot : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atBot (nhds 0))
(htop : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atTop (nhds 0))
(hleft : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ + ↑y * Complex.I)) MeasureTheory.volume)
(hright : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ' + ↑y * Complex.I)) MeasureTheory.volume)
:
theorem
verticalIntegral_sub_verticalIntegral_eq_squareIntegral
{σ σ' : ℝ}
{f : ℂ → ℂ}
{p : ℂ}
(hσ : σ < p.re ∧ p.re < σ')
(hf : HolomorphicOn f (Set.Icc σ σ' ×ℂ Set.univ \ {p}))
(hbot : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atBot (nhds 0))
(htop : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atTop (nhds 0))
(hleft : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ + ↑y * Complex.I)) MeasureTheory.volume)
(hright : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ' + ↑y * Complex.I)) MeasureTheory.volume)
:
∀ᶠ (c : ℝ) in nhdsWithin 0 (Set.Ioi 0), VerticalIntegral f σ' - VerticalIntegral f σ = RectangleIntegral f (-↑c - ↑c * Complex.I + p) (↑c + ↑c * Complex.I + p)
theorem
RectangleIntegral_tendsTo_UpperU
{σ σ' T : ℝ}
{f : ℂ → ℂ}
(htop : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atTop (nhds 0))
(hleft : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ + ↑y * Complex.I)) MeasureTheory.volume)
(hright : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ' + ↑y * Complex.I)) MeasureTheory.volume)
:
Filter.Tendsto (fun (U : ℝ) => RectangleIntegral f (↑σ + Complex.I * ↑T) (↑σ' + Complex.I * ↑U)) Filter.atTop
(nhds (UpperUIntegral f σ σ' T))
theorem
RectangleIntegral_tendsTo_LowerU
{σ σ' T : ℝ}
{f : ℂ → ℂ}
(hbot : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atBot (nhds 0))
(hleft : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ + ↑y * Complex.I)) MeasureTheory.volume)
(hright : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ' + ↑y * Complex.I)) MeasureTheory.volume)
:
Filter.Tendsto (fun (U : ℝ) => RectangleIntegral f (↑σ - Complex.I * ↑U) (↑σ' - Complex.I * ↑T)) Filter.atTop
(nhds (-LowerUIntegral f σ σ' T))
theorem
limitOfConstant
{a : ℝ → ℂ}
{σ : ℝ}
(σpos : 0 < σ)
(ha : ∀ (σ' σ'' : ℝ), 0 < σ' → 0 < σ'' → a σ' = a σ'')
(ha' : Filter.Tendsto a Filter.atTop (nhds 0))
:
theorem
limitOfConstantLeft
{a : ℝ → ℂ}
{σ : ℝ}
(σlt : σ ≤ -3 / 2)
(ha : ∀ (σ' σ'' : ℝ), σ' ≤ -3 / 2 → σ'' ≤ -3 / 2 → a σ' = a σ'')
(ha' : Filter.Tendsto a Filter.atBot (nhds 0))
:
theorem
tendsto_rpow_atTop_nhds_zero_of_norm_lt_one
{x : ℝ}
(xpos : 0 < x)
(x_lt_one : x < 1)
(C : ℝ)
:
Filter.Tendsto (fun (σ : ℝ) => x ^ σ * C) Filter.atTop (nhds 0)
theorem
tendsto_rpow_atTop_nhds_zero_of_norm_gt_one
{x : ℝ}
(x_gt_one : 1 < x)
(C : ℝ)
:
Filter.Tendsto (fun (σ : ℝ) => x ^ σ * C) Filter.atBot (nhds 0)
theorem
Perron.Integrable.one_div_const_add_sq
(c : ℝ)
(hc : 0 < c)
:
MeasureTheory.Integrable (fun (t : ℝ) => 1 / (c + t ^ 2)) MeasureTheory.volume
theorem
Perron.isIntegrable
{x σ : ℝ}
(xpos : 0 < x)
(σ_ne_zero : σ ≠ 0)
(σ_ne_neg_one : σ ≠ -1)
:
MeasureTheory.Integrable (fun (t : ℝ) => f x (↑σ + ↑t * Complex.I)) MeasureTheory.volume
theorem
Perron.contourPull
{x σ' σ'' : ℝ}
(xpos : 0 < x)
(hσ0 : 0 ∉ Set.uIcc σ' σ'')
(hσ1 : -1 ∉ Set.uIcc σ' σ'')
:
theorem
Perron.HolomorphicOn.upperUIntegral_eq_zero
{f : ℂ → ℂ}
{σ σ' T : ℝ}
(hσ : σ ≤ σ')
(hf : HolomorphicOn f {z : ℂ | σ ≤ z.re ∧ z.re ≤ σ' ∧ T ≤ z.im})
(htop : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atTop (nhds 0))
(hleft : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ + ↑y * Complex.I)) MeasureTheory.volume)
(hright : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ' + ↑y * Complex.I)) MeasureTheory.volume)
:
theorem
Perron.HolomorphicOn.lowerUIntegral_eq_zero
{f : ℂ → ℂ}
{σ σ' T : ℝ}
(hσ : σ ≤ σ')
(hf : HolomorphicOn f {z : ℂ | σ ≤ z.re ∧ z.re ≤ σ' ∧ z.im ≤ -T})
(hbot : Filter.Tendsto (fun (y : ℝ) => ∫ (x : ℝ) in σ..σ', f (↑x + ↑y * Complex.I)) Filter.atBot (nhds 0))
(hleft : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ + ↑y * Complex.I)) MeasureTheory.volume)
(hright : MeasureTheory.Integrable (fun (y : ℝ) => f (↑σ' + ↑y * Complex.I)) MeasureTheory.volume)
:
theorem
Filter.Tendsto.eventually_bddAbove
{α : Type u_1}
{β : Type u_2}
[LinearOrder β]
[NoMaxOrder β]
[TopologicalSpace β]
[ClosedIciTopology β]
{y : β}
{l : Filter α}
{f : α → β}
(hf : Tendsto f l (nhds y))
:
theorem
Perron.bddAbove_square_of_tendsto
{β : Type u_2}
[LinearOrder β]
[NoMaxOrder β]
[TopologicalSpace β]
[ClosedIciTopology β]
{y : β}
{f : ℂ → β}
{x : ℂ}
(hf : Filter.Tendsto f (nhdsWithin x {x}ᶜ) (nhds y))
: