Bounding of integrals by asymptotics #
We establish integrability of f from f = O(g).
Main results #
Asymptotics.IsBigO.integrableAtFilter: Iff = O[l] gon measurably generatedl,fis strongly measurable atl, andgis integrable atl, thenfis integrable atl.MeasureTheory.LocallyIntegrable.integrable_of_isBigO_cocompact: Iffis locally integrable, andf =O[cocompact] gfor somegintegrable atcocompact, thenfis integrable.MeasureTheory.LocallyIntegrable.integrable_of_isBigO_atBot_atTop: Iffis locally integrable, andf =O[atBot] g,f =O[atTop] g'for someg,g'integrableatBotandatToprespectively, thenfis integrable.MeasureTheory.LocallyIntegrable.integrable_of_isBigO_atTop_of_norm_eq_norm_neg: Iffis locally integrable,‖f(-x)‖ = ‖f(x)‖, andf =O[atTop] gfor somegintegrableatTop, thenfis integrable.
theorem
MeasureTheory.LocallyIntegrable.integrable_of_isBigO_atTop_of_norm_eq_norm_neg
{α : Type u_1}
{E : Type u_2}
{F : Type u_3}
[MeasurableSpace α]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
{f : α → E}
{g : α → F}
{μ : Measure α}
[TopologicalSpace α]
[SecondCountableTopology α]
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
[CompactIccSpace α]
[Filter.atTop.IsMeasurablyGenerated]
[MeasurableNeg α]
[μ.IsNegInvariant]
(hf : LocallyIntegrable f μ)
(hsymm : norm ∘ f =ᶠ[ae μ] norm ∘ f ∘ Neg.neg)
(ho : f =O[Filter.atTop] g)
(hg : IntegrableAtFilter g Filter.atTop μ)
:
Integrable f μ
If f is locally integrable, ‖f(-x)‖ = ‖f(x)‖, and f =O[atTop] g, for some
g integrable at atTop, then f is integrable.