Bounding of integrals by asymptotics #
We establish integrability of f
from f = O(g)
.
Main results #
Asymptotics.IsBigO.integrableAtFilter
: Iff = O[l] g
on measurably generatedl
,f
is strongly measurable atl
, andg
is integrable atl
, thenf
is integrable atl
.MeasureTheory.LocallyIntegrable.integrable_of_isBigO_cocompact
: Iff
is locally integrable, andf =O[cocompact] g
for someg
integrable atcocompact
, thenf
is integrable.MeasureTheory.LocallyIntegrable.integrable_of_isBigO_atBot_atTop
: Iff
is locally integrable, andf =O[atBot] g
,f =O[atTop] g'
for someg
,g'
integrableatBot
andatTop
respectively, thenf
is integrable.MeasureTheory.LocallyIntegrable.integrable_of_isBigO_atTop_of_norm_eq_norm_neg
: Iff
is locally integrable,‖f(-x)‖ = ‖f(x)‖
, andf =O[atTop] g
for someg
integrableatTop
, thenf
is integrable.
theorem
MeasureTheory.LocallyIntegrable.integrable_of_isBigO_atTop_of_norm_eq_norm_neg
{α : Type u_1}
{E : Type u_2}
{F : Type u_3}
[MeasurableSpace α]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
{f : α → E}
{g : α → F}
{μ : Measure α}
[TopologicalSpace α]
[SecondCountableTopology α]
[AddCommGroup α]
[LinearOrder α]
[IsOrderedAddMonoid α]
[CompactIccSpace α]
[Filter.atTop.IsMeasurablyGenerated]
[MeasurableNeg α]
[μ.IsNegInvariant]
(hf : LocallyIntegrable f μ)
(hsymm : norm ∘ f =ᶠ[ae μ] norm ∘ f ∘ Neg.neg)
(ho : f =O[Filter.atTop] g)
(hg : IntegrableAtFilter g Filter.atTop μ)
:
Integrable f μ
If f
is locally integrable, ‖f(-x)‖ = ‖f(x)‖
, and f =O[atTop] g
, for some
g
integrable at atTop
, then f
is integrable.