4 Zero Free Region
For \(s\in {\mathbb C}\) define \(Z(s) = \frac{\zeta '(s)}{\zeta (s)}\).
Define the set \(\mathcal{Z} = \{ \sigma +it\in {\mathbb C}: \sigma ,t\in {\mathbb R}\; {\rm and}\; \zeta (\sigma +it)=0 \} \).
For \(t\in {\mathbb R}\) define the set
For each \(t\in {\mathbb R}\) the set \(\mathcal Z_t\) is finite.
Let \(z\in {\mathbb C}\). If \(\Re (z){\gt}0\) then \(\Re (1/z){\gt}0\).
Let \(\sigma ,t\in {\mathbb R}\). If \(\sigma {\gt} 1\) then \(\zeta (\sigma + it) \neq 0 \).
Use lemma _root_.riemannZeta_ne_zero_of_one_le_re
in Nonvanishing.lean in Mathlib / NumberTheory / LSeries .
Let \(\sigma _1,t_1\in {\mathbb R}\). If \(\zeta (\sigma _1 + it_1) = 0\) then \(\sigma _1\le 1\).
Contrapositive of Lemma 489.
Let \(t\in {\mathbb R}\). If \(\rho _1=\sigma _1+it_1\in \mathcal Z_t\) then \(\sigma _1\le 1\).
For \(\delta {\gt}0\) and \(t\in {\mathbb R}\), let \(s=1+\delta +it\). Then \(s\notin \mathcal Z_t\).
We have \(\Re (s)=1+\delta {\gt}1\) since \(\delta {\gt}0\). Thus \(\zeta (s)\neq 0\) by lemma 468, and so \(s\notin \mathcal Z_t\).
For \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), let \(c=3/2+it\). Then \(1+\delta +it\in \mathcal{\mathbb D}_{1/2}(c)\).
We calculate \(1+\delta +it - c = 1+\delta - 3/2 = 1/2-\delta \). Hence \(|(1+\delta +it) - c| \le |1/2-\delta | \le 1/2\) so \(1+\delta +it\in \mathcal{\mathbb D}_{1/2}(c)\).
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), we have
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), we have
Apply Lemma 494 and use Mathlib: Complex.re_le_abs \(\Re (w) \le |w|\) for \(w=\sum _{\rho _1\in \mathcal Z_t} \frac{m_{\rho _1,\zeta }}{1+\delta +it-\rho _1} - Z(1+\delta +it)\).
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), we have
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), we have
Apply Lemma 495 with \(2t\).
If \(\mathcal Z\) is a finite set and \(c_z\in {\mathbb C}\) for \(z\in \mathcal Z\), then \(\Re (\sum _{z\in \mathcal Z}c_{z}) = \sum _{z\in \mathcal Z} \Re (c_{z})\).
For \(t\in {\mathbb R}\) and \(0{\lt}\delta {\lt}1\), we have
For \(t\in {\mathbb R}\) and \(0{\lt}\delta {\lt}1\), we have
Apply Lemma 499 with \(2t\).
For \(\delta {\gt}0\), \(t\in {\mathbb R}\), and \(\rho _1=\sigma _1+it_1\in \mathcal Z_t\) we have
We calculate \(1+\delta +it-\rho _1 = 1+\delta +it - (\sigma _1+it_1) = (1 + \delta -\sigma _1) + i(t-t_1)\).
For \(\delta {\gt}0\), \(t\in {\mathbb R}\), and \(\rho _1=\sigma _1+it_1\in \mathcal Z_t\) we have
Apply Lemma 501, then take the real part.
For \(\delta {\gt}0\), \(t\in {\mathbb R}\), and \(\rho _1=\sigma _1+it_1\in \mathcal Z_t\) we have
Apply Lemma 491.
For \(\delta {\gt}0\), \(t\in {\mathbb R}\), and \(\rho _1=\sigma _1+it_1\in \mathcal Z_t\) we have
For \(\delta {\gt}0\), \(t\in {\mathbb R}\), and \(\rho _1=\sigma _1+it_1\in \mathcal Z_t\) we have
Apply Lemma 504 and \(\delta {\gt}0\).
For \(\delta {\gt}0\), \(t\in {\mathbb R}\), and \(\rho _1=\sigma _1+it_1\in \mathcal Z_t\) we have
For \(0{\lt}\delta {\lt}1\), \(t\in {\mathbb R}\), and \(\rho _1=\sigma _1+it_1\in \mathcal Z_t\) we have
For \(0{\lt}\delta {\lt}1\), \(t\in {\mathbb R}\), and \(\rho _1=\sigma _1+it_1\in \mathcal Z_{2t}\) we have
Apply Lemma 507 with \(2t\).
For \(t\in {\mathbb R}\) and \(0{\lt}\delta {\lt}1\), we have
Apply Lemma 508.
For \(t\in {\mathbb R}\) and \(0{\lt}\delta {\lt}1\), we have
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), we have
For \(t\ge 2\) we have \(O(\log (2t)) \le O(\log t)\)
For \(t\in {\mathbb R}\) we have \(|2t|+2\ge 0\).
For \(t\in {\mathbb R}\) we have \(O(\log (|2t|+4)) \le O(\log (|t|+2))\)
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), we have
For \(0{\lt}\delta {\lt}1\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
Apply Lemma 527.
For \(0{\lt}\delta {\lt}1\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
For \(\delta {\gt}0\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
We calculate \(1+\delta +it-\rho = 1+\delta +it - (\sigma +it) = 1 + \delta -\sigma \).
For \(0{\lt}\delta {\lt}1\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
Apply Lemma 518.
For \(0{\lt}\delta {\lt}1\), \(\sigma \le 1\) we have \(\frac{1}{1 + \delta -\sigma }\in {\mathbb R}\).
We calculate \(1+\delta -\sigma \ge \delta {\gt}0\). Thus \(\frac{1}{1 + \delta -\sigma }\in {\mathbb R}\).
For \(\delta {\gt}0\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have \(\frac{1}{1 + \delta -\sigma }\in {\mathbb R}\).
For \(x\in {\mathbb R}\) we have \(\Re (x)=x\).
For \(\delta {\gt}0\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
For \(\delta {\gt}0\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
For \(0{\lt}\delta {\lt}1\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
For \(0{\lt}\delta {\lt}1\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
For \(\delta {\gt}0\), \(t\in {\mathbb R}\), let \(\rho =1 + \delta + it\). If \(\rho \in \mathcal Z\), then \(\rho \in \mathcal Z_t\).
Let \(c=3/2+it\). Then we calculate \(|\rho - c| = |1+\delta - 3/2| = |1/2-\delta | \le 1/2\). And since \(\rho \in \mathcal Z\), we have \(\zeta (\rho )=0\). Thus \(|\rho - c|\le 1/2\) and \(\zeta (\rho )=0\) together imply \(\rho \in \mathcal{Z}_t\).
There exists a constant \(C{\gt}1\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\) and \(\rho =\sigma +it\in \mathcal Z\), we have
For \(\delta {\gt}0\) we have
For \(\delta {\gt}0\) we have
Apply Lemma 529.
There exists a constant \(C{\gt}0\) such that for all \(\delta {\gt}0\) we have
By Lemma 529.
There exists a constant \(C{\gt}0\) such that for all \(\delta {\gt}0\) we have
By Lemma 531 and Mathlib Complex.re_le_abs for \(z=Z(1+\delta ) + \frac{1}{\delta }\).
There exists a constant \(C{\gt}0\) such that for all \(\delta {\gt}0\) we have
By Lemma 532 and Mathlib: Complex.add_re with \(z=-Z(1+\delta )\) and \(w=- \frac{1}{\delta }\).
There exists a constant \(C{\gt}0\) such that for all \(\delta {\gt}0\) we have
By Lemma 533 and Mathlib: RCLike.re_to_real with \(x=1/\delta \), since \(1/\delta \in {\mathbb R}\).
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\) with \(|t|{\gt}3\), if \(\sigma +it\in \mathcal{Z}\) then
Let \(s\in {\mathbb C}\). If \({\rm Re}(s){\gt}1\) then
Apply definition 484 for \(Z(s)\) and LSeries_vonMangoldt_eq_deriv_riemannZeta_div from Mathlib/NumberTheory/LSeries/Dirichlet.lean
For \(x,y\in {\mathbb R}\), if \(x{\gt}1\) then
Let \(s=x+iy\) so that \({\rm Re}(s)=x{\gt}1\). Apply Lemma 536 with \(s=x+iy\).
Let \(x,y\in {\mathbb R}\). If \(x{\gt}1\) then \(Z(x+iy)\) converges.
Apply definition 484 for \(Z(x+iy)\).
Let \(x,y\in {\mathbb R}\). If \(x{\gt}1\) then \(\Re \big(-Z(x+iy)\big)\) converges.
Apply Lemma 538.
For any \(n\ge 1\) and \(x,y\in {\mathbb R}\) we have \(n^{-(x+iy)} = n^{-x} n^{-iy}\).
Use \(-(x+iy) = -x-iy\), and Lemma 5 with \(\alpha =-x\) and \(\beta =-iy\).
For \(x,y\in {\mathbb R}\), if \(x{\gt}1\) then
Let \(x,y\in {\mathbb R}\). If \(x{\gt}1\) then \(\sum _{n=1}^{\infty } \Lambda (n)\, n^{-x} n^{-iy}\) converges.
For \(n,x\ge 1\) we have \(\Lambda (n)\, n^{-x}\ge 0\)
Proven by definition of von Mangoldt \(\Lambda (n)\ge 0\) and \(n^{-x}\ge 0\).
We have \(\Re \Big(\sum _{n=1}^{\infty } \Lambda (n)\, n^{-x} n^{-iy}\Big) = \sum _{n=1}^{\infty } \Re (\Lambda (n)\, n^{-x} n^{-iy})\)
For \(x{\gt}1\) and \(y\in {\mathbb R}\), we have \(\Re \big(-Z(x+iy)\big) = \sum _{n=1}^{\infty } \Re (\Lambda (n)\, n^{-x} n^{-iy})\)
For \(x{\gt}1\) and \(y\in {\mathbb R}\), we have \(\Re (\Lambda (n)\, n^{-x} n^{-iy}) = \Lambda (n)\, n^{-x}\, \Re (n^{-iy})\).
For \(x{\gt}1\) and \(y\in {\mathbb R}\), we have \(\Re \big(-Z(x+iy)\big) = \sum _{n=1}^{\infty } \Lambda (n)\, n^{-x}\, \Re (n^{-iy})\)
For \(x{\gt}1\) and \(y\in {\mathbb R}\), \(\Re \big(-Z(x+iy)\big) = \sum _{n=1}^{\infty } \Lambda (n) n^{-x}\cos (y\log n)\).
For \(x{\gt}1\) and \(y\in {\mathbb R}\), \(\sum _{n=1}^{\infty } \Lambda (n) n^{-x}\cos (y\log n)\) converges.
For \(x{\gt}1\) and \(t\in {\mathbb R}\), \(\sum _{n=1}^{\infty } \Lambda (n) n^{-x}\cos (2t\log n)\) converges.
Apply Lemma 549 with \(y=2t\).
For \(n\ge 1\), if \(t=0\) then \(\cos (t\log n)=1\).
For \(t=0\), we calculate \(\cos (t\log n) = \cos (0\log n) = \cos (0)=1\).
For \(x{\gt}1\), \(\sum _{n=1}^{\infty } \Lambda (n) n^{-x}\) converges.
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\),
Apply Lemma 548 with \(x=1+\delta \) and \(y=t\). Note \(x{\gt}1\) since \(\delta {\gt}0\).
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\), we have
Apply Lemma 548 with \(x=1+\delta \) and \(y=2t\). Note \(x{\gt}1\) since \(\delta {\gt}0\).
Let \(\delta {\gt}0\). We have
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\), we have
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\),
converges.
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\), we have
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\),
converges.
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\), we have
For \(n\ge 1\), \(\delta {\gt}0\), and \(t\in {\mathbb R}\), we have \(0\le \Lambda (n)\, n^{-(1+\delta )}(3 + 4\cos (t\log n) + \cos (2t\log n))\).
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\), we have
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\), we have
There exists a constant \(C{\gt}1\) such that, for any \(\sigma +it\in \mathcal{Z}\),
There exists a constant \(C{\gt}0\) such that, for any \(\sigma +it\in \mathcal{Z}\),
Apply Lemma 564.
There exists a constant \(C{\gt}0\) such that, for any \(\sigma +it\in \mathcal{Z}\),
Apply Lemma 565.
There exists a constant \(1{\gt}c{\gt}0\) such that if \(\zeta (\sigma +it)=0\) and \(|t|{\gt}3\) for some \(\sigma ,t\in {\mathbb R}\), then \(\sigma \le 1 - \frac{c}{\log (|t|+2)}\).
4.1 Bound on \(\zeta '/\zeta \)
For \(t\in {\mathbb R}\) and \(0{\lt}\delta {\lt}1/9\), define
Let \(0{\lt}a{\lt}1\) be the constant in 567. For \(z\in {\mathbb C}\) with \(|\Im (z)|{\gt}2\), define the function \(\delta (z) = \frac{a/20}{\log (|\Im (z)|+2)}\). For \(t\in {\mathbb R}\) define \(\delta _t = \delta (it)\).
For \(z\in {\mathbb C}\) we have \(0{\lt}\delta (z){\lt}1/9\). For \(t\in {\mathbb R}\) we have \(0{\lt}\delta _t{\lt}1/9\).
Unfold definition 569.
For \(z\in {\mathbb C}\), if \(\Re (z) {\gt} 1 - 9\delta (z)\) then \(\zeta (z)\neq 0\).
Unfold definition of \(\delta (z)\) in definition 569, and apply contrapositive of lemma 567.
Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\). For \(c=3/2+it\) and \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\), we have \(z\in \overline{{\mathbb D}}_{2/3}(c)\).
We calculate \(|z-c|= |\sigma - 3/2| \le 1/2 + \delta _t\). Note \(\delta _t \le 1/9\) by lemma 570. Hence \(|z-c|\le 2/3\).
Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\). For \(c=3/2+it\) and \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\), we have \(z\notin \mathcal K_{\zeta }(5/6;c)\).
Since \(\Re (z) = \sigma \ge 1-\delta _t = 1 - \delta (z)\), we have \(\zeta (z)\neq 0\) by lemma 571. Thus \(z\notin \mathcal K_{\zeta }(5/6;c)\).
There exists a constant \(C_1{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
Apply lemma 483 with \(z=\sigma +it\), \(r_1 = 2/3\), \(r = 3/4\), and choosing \(C_1 = C\left(\frac{1}{(r-r_1)^3} + 1\right)\). Note \(z\in \overline{{\mathbb D}}_{r_1}(c)\setminus \mathcal K_\zeta (5/6;c)\) by ??.
For \(z,\rho \in {\mathbb C}\) we have \(|z-\rho | \ge \Re (z) - \Re (\rho )\)
Apply Mathlib: Complex.re_le_abs and then Complex.sub_re to calculate \(|z-\rho | \ge \Re (z-\rho ) = \Re (z) - \Re (\rho )\).
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) and \(\rho \in \mathcal K_{\zeta }(5/6;3/2+it)\) we have \(\Re (\rho ) \le 1 - 9\delta (\rho )\).
By definition \(\rho \in \mathcal K_{\zeta }(5/6;3/2+it)\) implies \(\zeta (\rho )=0\). Then \(\zeta (\rho )=0\) implies \(\Re (\rho ) \le 1 - 9\delta (\rho )\) by the contrapositive of lemma 571.
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) and \(z\in \overline{{\mathbb D}}_{5/6}(3/2+it)\), we have \(|\Im (z)| \le |t|+5/6\).
Unfold definition of \(\overline{{\mathbb D}}_{2\delta _t}(1-\delta _t+it)\).
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) and \(z\in \overline{{\mathbb D}}_{5/6}(3/2+it)\), we have \(|\Im (z)|+2 \le (|t|+2)^3\).
Apply lemma 577 and \(3{\lt}|t|\).
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) and \(z\in \overline{{\mathbb D}}_{5/6}(3/2+it)\), we have \(\log (|\Im (z)|+2) \le 3\log (|t|+2)\).
Apply lemma 578 and Mathlib: Real.log_le_log
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) and \(z\in \overline{{\mathbb D}}_{5/6}(3/2+it)\), we have \(1/\log (|t|+2) \le 3/\log (|\Im (z)|+2)\).
Apply lemma 579 and Mathlib: one_div_le_one_div
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) and \(z\in \overline{{\mathbb D}}_{5/6}(3/2+it)\), we have \(\delta _t \le 3\delta (z)\).
Unfold definitions of \(\delta _t\) and \(\delta (z)\) from definition 569. Then apply lemma 580.
Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\), and \(c=3/2+it\). For all \(\rho \in \mathcal K_{\zeta }(5/6;c)\) we have \(\delta (\rho ) \ge \frac{1}{3}\delta _t\)
Apply lemma 581 with \(z=\rho \). Note \(\mathcal K_{\zeta }(5/6;c)\subset \overline{{\mathbb D}}_{5/6}(c)\).
Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\), and \(c=3/2+it\). For all \(\rho \in \mathcal K_{\zeta }(5/6;c)\) we have \(\Re (\rho ) \le 1 - 3\delta _t\)
Apply ??.
Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\), and \(c=3/2+it\). For all \(\rho \in \mathcal K_{\zeta }(5/6;c)\) and \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have \(\Re (z) - \Re (\rho ) \ge 2\delta _t\).
Apply lemma 583, and calculate \(\Re (z) - \Re (\rho ) \ge (1 - \delta _t) - (1 - 3\delta _t) = 2\delta _t\).
Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\), and \(c=3/2+it\). For all \(\rho \in \mathcal K_{\zeta }(5/6;c)\) and \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have \(|z-\rho | \ge 2\delta _t\).
Apply ??
Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\), and \(c=3/2+it\). For all \(\rho \in \mathcal K_{\zeta }(5/6;c)\) and \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have \(|z-\rho | {\gt} 0\).
Apply ??.
Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\), and \(c=3/2+it\). For all \(\rho \in \mathcal K_{\zeta }(5/6;c)\) and \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have \(\frac{1}{|z-\rho |} \le \frac{1}{2\delta _t}\).
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\), let \(c=3/2+it\). Then \(m_{\rho ,\zeta }\in {\mathbb N}\) for all \(\rho \in K_{\zeta }(5/6;c)\).
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\), let \(c=3/2+it\). Then \(K_{\zeta }(5/6;c)\) is finite.
For all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
There exists a constant \(C_1{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
Apply ??.
For all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
Apply lemma 587.
Let \(B{\gt}1\), \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\). If \(f(c)\neq 0\) and \(|f(z)|\le B\) on \(z\in \overline{{\mathbb D}}_R(c)\), then \(\sum _{\rho \in \mathcal K_f(R_1;c)} m_{\rho ,f} \le \frac{\log (B/|f(c)|)}{\log (R/R_1)}\).
There exists a constant \(C_2{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), we have \(\sum _{\rho \in \mathcal K_{\zeta }(5/6;c)}m_{\rho ,\zeta } \le C_2 \log |t|\)
There exists a constant \(C_3{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
Apply ??.
There exists a constant \(C_4{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
Apply ??.
There exists a constant \(C{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), and all \(s=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\), we have
Apply ??.
There exist constants \(0{\lt}A{\lt}1\) and \(C{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), and all \(s=\sigma +it\) with \(1 - A/\log (|t|+2) \le \sigma \le 3/2\), we have
Apply ??.
Let \(t\in {\mathbb R}\). If \(z\in \overline{{\mathbb D}}_{2\delta _t}(1-\delta _t+it)\) then \(\Re (z) {\gt} 1-4\delta _t\)
Apply lemma 612 with \(\delta =\delta _t\).
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) and \(z\in \overline{{\mathbb D}}_{2\delta _t}(1-\delta _t+it)\), we have \(\Re (z) \ge 1 - 6\delta (z)\)
Apply ??.
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) we have \(\mathcal{Y}_t(\delta _t)\subset \overline{{\mathbb D}}_{2\delta _t}(1-\delta _t+it)\).
Unfold definition of \(\mathcal{Y}_t(\delta _t)\) in definition 568
Let \(t\in {\mathbb R}\) and \(\delta {\gt}0\). If \(\rho _1\in \mathcal{Y}_t(\delta )\) then \(\zeta (\rho _1) = 0\).
Unfold definition 568 for \(\mathcal{Y}_t(\delta )\).
For \(w\in {\mathbb C}\) we have \(|\Re (w)| \le |w|\)
Mathlib (try Complex.abs_re_le_abs)
Let \(t\in {\mathbb R}\), \(1/9 {\gt} \delta {\gt}0\) and \(z\in {\mathbb C}\). Then \(|\Re (z-(1-\delta +it))| \le |z-(1-\delta +it)|\)
Apply Lemma 603 with \(w=z-(1-\delta +it)\).
Let \(t\in {\mathbb R}\), \(1/9 {\gt} \delta {\gt}0\) and \(z\in {\mathbb C}\). If \(|z-(1-\delta +it)| \le \delta /2\) then \(|\Re (z-(1-\delta +it))| \le \delta /2\).
Apply Lemma 604.
Let \(t\in {\mathbb R}\) and \(1/9 {\gt} \delta {\gt}0\) and \(z\in {\mathbb C}\). We have \(\Re (z-(1-\delta +it)) = \Re (z)-(1-\delta )\)
Let \(t\in {\mathbb R}\), \(1/9 {\gt} \delta {\gt}0\) and \(z\in {\mathbb C}\). If \(|z-(1-\delta +it)| \le \delta /2\) then \(|\Re (z)-(1-\delta )| \le \delta /2\)
Let \(a\in {\mathbb R}\) and \(b{\gt}0\). If \(|a|\le b\) then \(a\ge -b\).
Mathlib (try neg_le_of_abs_le)
Let \(1/ 9 {\gt} \delta {\gt}0\) and \(z\in {\mathbb C}\). If \(|\Re (z)-(1-\delta )| \le \delta /2\) then \(\Re (z)-(1-\delta ) \ge -\delta /2\)
608 with \(a=\Re (z)-(1-\delta )\) and \(b=\delta /2\).
Let \(0{\lt}\delta {\lt}1/9\) and \(z\in {\mathbb C}\). If \(|\Re (z)-(1-\delta )| \le 2\delta \) then \(\Re (z) \ge 1-3\delta \)
Apply Lemma 609 and then add \(1-\delta \) to both sides.
Let \(0{\lt}\delta {\lt}1/9\) and \(z\in {\mathbb C}\). If \(|\Re (z)-(1-\delta )| \le 2\delta \) then \(\Re (z) {\gt} 1-4\delta \)
Apply Lemma 610, and then use \(1-\frac{3}{2}\delta {\gt} 1-2\delta \), since \(\delta {\gt}0\).
Let \(t\in {\mathbb R}\), \(0{\lt}\delta {\lt}1/9\) and \(z\in {\mathbb C}\). If \(|z-(1-\delta +it)| \le 2\delta \) then \(\Re (z) {\gt} 1-4\delta \).
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) we have \(\mathcal{Y}_t(\delta _t)= \emptyset \).
For any \(g:{\mathbb C}\to {\mathbb C}\), if \(S=\emptyset \) then
Mathlib (try Mathlib.Meta.NormNum.Finset.sum_empty)
For \(t\in {\mathbb R}\) with \(|t|{\gt}3\) we have
For \(\sigma \ge 3/2\) and \(t\in {\mathbb R}\) we have \(|\frac{\zeta '}{\zeta }(\sigma + it)| \le |\frac{\zeta '}{\zeta }(\sigma )|\)
By Mathlib: ArithmeticFunction.LSeries_vonMangoldt_eq_deriv_riemannZeta_div
we have \(-\frac{\zeta '}{\zeta }(\sigma + it) = \sum _{n=1}^\infty \frac{\Lambda (n)}{n^s}\).
Note this series is summable by Mathlib: ArithmeticFunction.LSeriesSummable_vonMangoldt
Then apply Mathlib: norm_tsum_le_tsum_norm so that \(|\frac{\zeta '}{\zeta }(\sigma + it)| \le \sum _{n=1}^\infty \frac{\Lambda (n)}{|n^s|}\).
Observe \(|n^s| = n^{\Re (s)}e^{-\operatorname{Arg}(s)\Im (n)}\) by Mathlib: Complex.abs_cpow_le. Note \(n\in {\mathbb R}\) so \(\Im (n)=0\) by imaginaryPart_ofReal. Thus \(e^{-\operatorname{Arg}(s)\Im (n)} = e^0 = 1\). And \(\Re (s)=\sigma \). Hence \(|n^s| = n^{\sigma }\).
Thus \(|\frac{\zeta '}{\zeta }(\sigma + it)| \le \sum _{n=1}^\infty \frac{\Lambda (n)}{n^\sigma }\).
Again by Mathlib: ArithmeticFunction.LSeries_vonMangoldt_eq_deriv_riemannZeta_div we have\(\sum _{n=1}^\infty \frac{\Lambda (n)}{n^\sigma } = -\frac{\zeta '}{\zeta }(\sigma )\).
Take absolute values to get \(|\frac{\zeta '}{\zeta }(\sigma + it)| \le |\frac{\zeta '}{\zeta }(\sigma )|\).
There exists a constant \(C{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), and all \(s=\sigma +it\) with \(\sigma \ge 3/2\), we have
There exist constants \(0{\lt}A{\lt}1\) and \(C{\gt}1\) such that for any \(t\in {\mathbb R}\) with \(|t|{\gt}3\) and \(\sigma \ge 1 - A/\log (|t|+2)\), we have
Apply ??
There exists a constant \(A\in (0,\tfrac 12)\) such that for every real \(t\) with \(|t|{\gt}3\) and every real \(\sigma \) with
we have
In other words, a uniform zero-free region of the form \(\Re s \ge 1 - A/\log |\Im s|\) holds for large \(|\Im s|\).
There exist constants \(A\in (0,\tfrac 12)\) and \(C{\gt}0\) such that for every real \(t\) with \(|t|{\gt}3\) and every real \(\sigma \) with
the logarithmic derivative of the Riemann zeta function satisfies the uniform bound
The constants \(A,C\) are absolute (independent of \(\sigma \) and \(t\)) and give a uniform control of \(\zeta '/\zeta \) in the stated region.