1 Complex Analysis
For \(t{\gt} 1\) we have \(2\log t \le O(\log t)\)
Uses definition of big \(O(.)\)
For \(t\ge 2\) we have \(\log (t^2) = 2\log t\)
For \(t\ge 2\) we have \(\log (2t) \le \log (t^2)\)
Uses \(2t \le t^2\), and \(\log (t)\) monotonically increasing.
For \(t\ge 2\) we have \(\log (2t) \le 2\log t\)
For any \(n\ge 1\) and \(\alpha ,\beta \in {\mathbb C}\) we have \(n^{\alpha +\beta } = n^\alpha \cdot n^{\beta }\)
For \(b\in {\mathbb R}\) and \(w\in {\mathbb C}\) we have \(\Re (bw) = b\Re (w)\).
For a convergent series \(v=\sum _{n=1}^\infty v_n\) with \(v_n\in {\mathbb C}\), we have \(\Re (v) = \sum _{n=1}^\infty \Re (v_n)\).
For \(a\in {\mathbb R}\) we have \(e^{ia} = \cos (a) + i\sin (a)\)
For \(a\in {\mathbb R}\) we have \(\Re (e^{ia}) = \cos (a)\)
Apply Lemma 8.
For \(n\ge 1\) we have \(n = e^{\log n}\).
For \(a\in {\mathbb R}\) we have \(\cos (-a) = \cos (a)\)
For \(n\ge 1\), \(y\in {\mathbb R}\) we have \(\cos (-y\log n) = \cos (y\log n)\)
Let \(a=y\log n\). Since \(n\ge 1\) we have \(\log n\ge 0\), so \(a\in {\mathbb R}\). Apply Lemma 11 with \(a=y\log n\).
For \(n\ge 1\) and \(y\in {\mathbb R}\) we have \(n^{-iy} = e^{-iy\log n}\).
By Lemma 10 \(n^{-iy} = (e^{\log n})^{-iy}\). Then \((e^{\log n})^{-iy} = e^{-iy\log n}\) so \(n^{-iy} = e^{-iy\log n}\).
For \(n\ge 1\) and \(y\in {\mathbb R}\) we have \(\Re (e^{-iy\log n}) = \cos (-y\log n)\).
Let \(a=-y\log n\) so \(e^a = e^{-iy\log n}\). Apply Lemma 9 with \(a=-y\log n\).
For \(n\ge 1\) and \(y\in {\mathbb R}\) we have \(\Re (n^{-iy}) = \cos (-y\log n)\).
For \(n\ge 1\) and \(y\in {\mathbb R}\) we have \(\Re (n^{-iy}) = \cos (y\log n)\).
For any \(\theta \in {\mathbb R}\) we have \(\cos (2\theta ) = 2\cos (\theta )^2 - 1\).
For any \(\theta \in {\mathbb R}\) we have \(2\cos (\theta )^2 = 1+\cos (2\theta )\).
Apply Lemma 17
For any \(\theta \in {\mathbb R}\) we have \(2(1+\cos (\theta ))^2 = 2 + 4\cos (\theta ) + 2\cos (\theta )^2\).
We calculate \(2(1+\cos (\theta ))^2 = 2(1 + 2\cos (\theta ) + \cos (\theta )^2) = 2 + 4\cos (\theta ) + 2\cos (\theta )^2.\)
For any \(\theta \in {\mathbb R}\) we have \(2(1+\cos (\theta ))^2 = 3+4\cos (\theta )+\cos (2\theta )\).
For \(y\in {\mathbb R}\) we have \(0\le y^2\).
For \(y\in {\mathbb R}\) we have \(0\le 2y^2\).
Apply Lemma 21.
For any \(\theta \in {\mathbb R}\) we have \(0\le 2(1+\cos (\theta ))^2\).
Apply Lemma 22 with \(y=1+\cos (\theta )\).
For any \(\theta \in {\mathbb R}\) we have \(0\le 3+4\cos (\theta )+\cos (2\theta )\).
For \(n\ge 1\) and \(t\in {\mathbb R}\) we have \(0\le 3+4\cos (t\log n)+\cos (2t\log n)\).
Apply Lemma 24 with \(\theta =t\log n\).
For a convergent series \(r=\sum _{n=1}^\infty r_n\), if \(r_n\ge 0\) for all \(n\ge 1\), then \(r\ge 0\).
For any \(w \in {\mathbb C}\), \(\Re (2M-w) = 2M - \Re (w)\).
We have \(\Re (2M-f(z)) = 2M - \Re (f(z))\).
Apply Lemma 27 with \(w=f(z)\).
For \(x, M\in {\mathbb R}\), if \(x \le M\) then \(2M-x \ge M\).
For \(w\in {\mathbb C}\) and \(M{\gt}0\), if \(\Re (w) \le M\) then \(2M-\Re (w) \ge M\).
Apply Lemma 29 with \(x=\Re (w)\).
For \(w\in {\mathbb C}\) and \(M{\gt}0\), if \(\Re (w) \le M\) then \(\Re (2M - w) \ge M\).
For \(w\in {\mathbb C}\) and \(M{\gt}0\), if \(\Re (w) \le M\) then \(\Re (2M - w) {\gt} 0\).
If \(w \in {\mathbb C}\) has \(\Re (w) {\gt} 0\), then \(w \neq 0\).
For \(w\in {\mathbb C}\) and \(M{\gt}0\), if \(\Re (w) \le M\) then \(2M - w\neq 0\).
Let \(z\in {\mathbb C}\). If \(z\neq 0\) then \(|z|{\gt}0\).
For \(w\in {\mathbb C}\) and \(M{\gt}0\), if \(\Re (w) \le M\) then \(|2M - w|{\gt}0\).
For any \(w \in {\mathbb C}\), we have \(w=\Re (w) + i\Im w\).
For any \(a,b \in {\mathbb R}\), we have \(|a + ib|^2 = a^2 + b^2\).
For any \(a,b,c \in {\mathbb R}\), we have \(|c-a - ib|^2 = (c-a)^2 + b^2\).
For any \(a,b,c \in {\mathbb R}\), we have \(|c-a - ib|^2 - |a + ib|^2 = (c-a)^2 - a^2\).
For any \(a,c \in {\mathbb R}\), we have \((c-a)^2 = a^2-2ac+c^2\).
For any \(a,c \in {\mathbb R}\), we have \((c-a)^2 - a^2 = 2c(c-a)\).
Apply Lemma 41
For any \(a,b,c \in {\mathbb R}\), we have \(|c-a - ib|^2 - |a + ib|^2 = 2c(c-a)\).
For any \(w \in {\mathbb C}\), \(|2M-\Re (w) - i\Im w|^2 - |\Re (w) + i\Im w|^2 = 4M(M - \Re (w))\).
Apply Lemma 43 with \(a=\Re (w)\) and \(b=\Im w\) and \(c=2M\).
For any \(w \in {\mathbb C}\), \(|2M-w|^2 - |w|^2 = 4M(M - \Re (w))\).
If \(M{\gt}0\) and \(x \le M\), then \(4M(M-x) \ge 0\).
Let \(M{\gt}0\) and \(w\in {\mathbb C}\). If \(\Re (w) \le M\) then \(4M(M-\Re (w)) \ge 0\).
Apply Lemma 46 with \(x=\Re (w)\).
Let \(M{\gt}0\) and \(w \in {\mathbb C}\). If \(\Re (w) \le M\) then \(|2M-w|^2 - |w|^2 \ge 0\).
Let \(M{\gt}0\) and \(w \in {\mathbb C}\). If \(\Re (w) \le M\) then \(|2M-w|^2 \ge |w|^2\).
Apply Lemma 48.
Let \(M{\gt}0\) and \(w \in {\mathbb C}\). If \(\Re (w) \le M\) then \(|2M-w| \ge |w|\).
Apply Lemma 49 and take non-negative square-root.
Let \(M{\gt}0\) and \(w \in {\mathbb C}\). If \(\Re (w) \le M\) then \(|w|\le |2M-w|\).
Apply Lemma 50.
If \(c{\gt}0\) and \(0\le a\le b\), then \(a/c\le b/c\).
If \(b{\gt}0\) and \(0\le a\le b\), then \(a/b\le 1\).
Apply Lemma 52 with \(c=b{\gt}0\).
Let \(M{\gt}0\) and \(w \in {\mathbb C}\). If \(|2M-w|{\gt}0\) and \(|w|\le |2M-w|\) then \(\frac{|w|}{|2M-w|} \le 1\).
Let \(M{\gt}0\) and \(w \in {\mathbb C}\). If \(\Re (w) \le M\) and \(|w|\le |2M-w|\) then \(\frac{|w|}{|2M-w|} \le 1\).
Let \(M{\gt}0\) and \(w \in {\mathbb C}\). If \(\Re (w) \le M\) then \(\frac{|w|}{|2M-w|} \le 1\).
Let \(N,G\in {\mathbb C}\). We have \(|N + G| \le |N| + |G|\)
Let \(N,F\in {\mathbb C}\). We have \(|N - F| \le |N| + |F|\)
Apply Lemma 57 with \(G=-F\).
Let \(r{\gt}0\) and \(N,F\in {\mathbb C}\). We have \(r|N - F| \le r(|N| + |F|)\)
Let \(r{\gt}0\) and \(N,F\in {\mathbb C}\). We have \(r|N - F| \le r|N| + r|F|\)
Apply Lemma 59
Let \(0{\lt}r{\lt}R\) and \(N,F\in {\mathbb C}\). If \(R|F| \le r|N-F|\) then \(R|F| \le r|N| + r|F|\)
Apply assumption \(R|F| \le r|N-F|\) and Lemma 60
Let \(0{\lt}r{\lt}R\) and \(N,F\in {\mathbb C}\). If \(R|F| \le r|N-F|\) then \((R-r)|F| \le r|N|\)
Apply Lemma 61
For \(a\in {\mathbb R}\), if \(a{\gt}0\) then \(|a|=a\).
For \(a\in {\mathbb R}\), if \(a{\gt}0\) then \(2a{\gt}0\).
For \(a\in {\mathbb R}\), if \(a{\gt}0\) then \(|2a|=2a\).
Let \(0{\lt}r{\lt}R\), \(M{\gt}0\), and \(F\in {\mathbb C}\). If \(RF \le r|2M-F|\) then \((R-r)|F| \le 2Mr\)
Let \(0{\lt}r{\lt}R\) and \(F\in {\mathbb C}\). Then we have \((R-r)|F| \ge 0\)
Let \(0{\lt}r{\lt}R\), \(M{\gt}0\), and \(F\in {\mathbb C}\). If \((R-r)|F| \le 2Mr\) then \(|F| \le \frac{2Mr}{R-r}\).
Let \(0{\lt}r{\lt}R\), \(M{\gt}0\), and \(F\in {\mathbb C}\). If \(R|F| \le r|2M-F|\) then \(|F| \le \frac{2Mr}{R-r}\)
Let \(f:{\mathbb C}\to {\mathbb C}\) be analytic, and let \(n_0\) be the analyticOrderAt for \(f\) at \(0\). If \(f(0)=0\) then \(n_0 \neq 0\).
Let \(f:{\mathbb C}\to {\mathbb C}\) be analytic, and let \(n_0\) be the analyticOrderAt for \(f\) at \(0\). If \(f\neq 0\) then \(n_0 \in {\mathbb N}\).
Let \(f:{\mathbb C}\to {\mathbb C}\) be analytic at \(0\), and let \(n_0\) be the analyticOrderAt for \(f\) at \(0\). If \(n_0\in {\mathbb N}\) then there exists a nhd \(N\) of \(0\) and \(g:{\mathbb C}\to {\mathbb C}\) such that \(g\) is analytic at \(0\), and \(f(z) = z^{n_0} g(z)\) on \(N\).
Let \(f:{\mathbb C}\to {\mathbb C}\) be analytic at \(0\), and let \(n_0\) be the analyticOrderAt for \(f\) at \(0\). If \(n_0\in {\mathbb N}\) and \(n_0\neq 0\), then there exists a nhd \(N\) of \(0\) and \(h:{\mathbb C}\to {\mathbb C}\) such that \(h\) is analytic at \(0\), and \(f(z) = zh(z)\) on \(N\).
Apply Lemma 72 and let \(h(z)=z^{n_0-1} g(z)\).
Let \(f:{\mathbb C}\to {\mathbb C}\) be analytic at \(0\), and let \(n_0\) be the analyticOrderAt for \(f\) at \(0\). If \(f\neq 0\) and \(f(0)=0\), then \(h(z)=f(z)/z\) is analytic at \(0\).
The function \(f_1(z) = \frac{1}{z}\) is analytic on \(\{ z\in {\mathbb C}: z \neq 0\} \).
Let \(T\subset S\subset {\mathbb C}\) and \(f:S\to {\mathbb C}\). If \(f\) is analytic on \(S\) then \(f\) is analytic on \(T\).
Let \(0{\lt}R{\lt}1\) and \(V=\{ z\in \overline{{\mathbb D}}_R: z \neq 0\} \) and \(U=\{ z\in {\mathbb C}: z \neq 0\} \). Then \(V\subset U\).
unfold definitions, using \(\overline{{\mathbb D}}_R\subset {\mathbb C}\).
The function \(f_1(z) = \frac{1}{z}\) is analytic on \(T=\{ z\in \overline{{\mathbb D}}_R: z \neq 0\} \).
Let \(T\subset S\subset {\mathbb C}\), and let \(f_1:S\to {\mathbb C}\) and \(f_2:S\to {\mathbb C}\). If \(f_1\) is analytic on \(T\) and \(f_2\) is analytic on \(T\), then \(f_1\cdot f_2\) is analytic on \(T\).
Let \(T\subset S\subset {\mathbb C}\), and let \(f_1:S\to {\mathbb C}\) and \(f_2:S\to {\mathbb C}\). If \(f_1\) is analytic on \(T\) and \(f_2\) is analytic on \(S\), then \(f_1\cdot f_2\) is analytic on \(T\).
Let \(T=\{ z\in \ \overline{{\mathbb D}}_R : z\neq 0\} \) and \(f_1:{\mathbb C}\to {\mathbb C}\) and \(f_2:{\mathbb C}\to {\mathbb C}\). If \(f_1\) is analytic on \(T\) and \(f_2\) is analytic on \(\overline{{\mathbb D}}_R\), then \(f_1\cdot f_2\) is analytic on \(T\).
Apply Lemmas 80 with \(S=\overline{{\mathbb D}}_R\) and \(T=\{ z\in \ \overline{{\mathbb D}}_R : z\neq 0\} \).
Let \(T=\{ z\in \ \overline{{\mathbb D}}_R : z\neq 0\} \) and \(f:{\mathbb C}\to {\mathbb C}\). If \(f(z)\) is analytic on \(\overline{{\mathbb D}}_R\), then \(f(z)/z\) is analytic on \(T\).
Let \(V\subset {\mathbb C}\) and \(h:{\mathbb C}\to {\mathbb C}\). If \(h\) is AnalyticOn \(V\), then \(h\) is AnalyticWithinAt \(z\) for all \(z\in V\).
Let \(h:{\mathbb C}\to {\mathbb C}\). If \(h\) is AnalyticWithinAt \(z\) for all \(z\in \overline{{\mathbb D}}_R\), then \(h\) is AnalyticOn \(\overline{{\mathbb D}}_R\).
Let \(T=\{ z\in \ \overline{{\mathbb D}}_R : z\neq 0\} \). Then \(\overline{{\mathbb D}}_R = \{ 0\} \cup T\).
Unfold definition of \(T\).
Let \(T=\{ z\in \ \overline{{\mathbb D}}_R : z\neq 0\} \) and \(h: {\mathbb C}\to {\mathbb C}\). If \(h\) is AnalyticWithinAt \(0\) and \(h\) is AnalyticWithinAt \(z\) for all \(z\in T\), then \(h\) is AnalyticWithinAt \(z\) for all \(z\in \overline{{\mathbb D}}_R\).
Apply Lemma 85.
Let \(T=\{ z\in \ \overline{{\mathbb D}}_R : z\neq 0\} \) and \(h: {\mathbb C}\to {\mathbb C}\). If \(h\) is AnalyticWithinAt \(0\) and \(h\) is AnalyticWithinAt \(z\) for all \(z\in T\), then \(h\) is AnalyticOn \(\overline{{\mathbb D}}_R\).
Let \(h:{\mathbb C}\to {\mathbb C}\). If \(h\) is AnalyticAt \(0\), then \(h\) is AnalyticWithinAt \(0\).
Let \(T=\{ z\in \ \overline{{\mathbb D}}_R : z\neq 0\} \) and \(h: {\mathbb C}\to {\mathbb C}\). If \(h\) is AnalyticAt \(0\) and \(h\) is AnalyticOn \(T\), then \(h\) is AnalyticOn \(\overline{{\mathbb D}}_R\).
1.1 Borel-Carathéodory I
For \(R{\gt}0\), define the open ball \({\mathbb D}_R := \{ z\in {\mathbb C}: |z| {\lt} R\} \).
For \(R{\gt}0\), the closure of \({\mathbb D}_R\) equals \(\overline{{\mathbb D}}_R := \{ z\in {\mathbb C}: |z|\le R\} \)
For \(R{\gt}0\), if \(w\in \overline{{\mathbb D}}_R\) then \(|w|\le R\).
Apply Lemma 91.
For \(R{\gt}0\), if \(w\notin {\mathbb D}_R\) then \(|w| \ge R\).
Apply definition 90.
For \(R{\gt}0\), if \(|w|\le R\) and \(|w|\ge R\) then \(|w|=R\).
For \(R{\gt}0\), if \(w\in \overline{{\mathbb D}}_R\) and \(w\notin {\mathbb D}_R\), then \(|w|=R\).
For \(R{\gt}0\) we have \(|R|=R\).
For \(R{\gt}0\) we have \(|R|\le R\).
Apply Lemma 96 and \(R\le R\).
For \(R{\gt}0\) we have \(R\in \overline{{\mathbb D}}_R\).
For \(R{\gt}0\) the ball \(\overline{{\mathbb D}}_R\) is a compact subset of \({\mathbb C}\).
If \(K\subset {\mathbb C}\) is compact and \(g:K \to {\mathbb C}\) is continuous, then there exists \(v\in K\) such that \(|g(v)| \ge |g(z)|\) for all \(z\in K\).
If \(g:\overline{{\mathbb D}}_R \to {\mathbb C}\) is continuous, then there exists \(v\in \overline{{\mathbb D}}_R\) such that \(|g(v)| \ge |g(z)|\) for all \(z\in \overline{{\mathbb D}}_R\).
If \(h:\overline{{\mathbb D}}_R \to {\mathbb C}\) is analytic, then \(h\) is continuous.
If \(h:\overline{{\mathbb D}}_R \to {\mathbb C}\) is analytic, then there exists \(u\in \overline{{\mathbb D}}_R\) such that \(|h(u)| \ge |h(z)|\) for all \(z\in \overline{{\mathbb D}}_R\).
Let \(R{\gt}0\). Let \(h:\overline{{\mathbb D}}_R \to {\mathbb C}\) be analytic. Suppose there exists \(w\in {\mathbb D}_R\) such that \(|h(w)| \ge |h(z)|\) for all \(z\in {\mathbb D}_R\). Then \(|h(z)|=|h(w)|\) for all \(z\in \overline{{\mathbb D}}_R\).
Apply Lemma 91
Let \(R{\gt}0\). Let \(h:\overline{{\mathbb D}}_R \to {\mathbb C}\) be analytic. Suppose there exists \(w\in {\mathbb D}_R\) such that \(|h(w)| \ge |h(z)|\) for all \(z\in {\mathbb D}_R\). Then \(|h(R)|=|h(w)|\).
Let \(R{\gt}0\). Let \(h:\overline{{\mathbb D}}_R \to {\mathbb C}\) be analytic. Suppose there exists \(w\in {\mathbb D}_R\) such that \(|h(w)| \ge |h(z)|\) for all \(z\in {\mathbb D}_R\). Then \(|h(R)|\ge |h(z)|\) for all \(z\in \overline{{\mathbb D}}_R\)
Let \(R{\gt}0\). Let \(h:\overline{{\mathbb D}}_R \to {\mathbb C}\) be analytic. There exists \(v\in \overline{{\mathbb D}}_R\) with \(|v|=R\) such that \(|h(v)|\ge |h(z)|\) for all \(z\in \overline{{\mathbb D}}_R\)
Apply Lemma 103 to get \(u\in \overline{{\mathbb D}}_R\) such that \(|h(u)|\ge |h(z)|\) for all \(z\in \overline{{\mathbb D}}_R\). If \(u\in {\mathbb D}_R\) then set \(v=R\). Now by Lemma 106 we have \(|v|=|R|=R\). Else \(u\notin {\mathbb D}_R\), then set \(v=u\). Now by Lemma 95 with \(w=u\) we have \(|v|=|u|=R\).
Let \(R{\gt}0\). Let \(h(z)\) be analytic on \(|z|\le R\). There exists \(v\in {\mathbb C}\) with \(|v|=R\) such that \(|h(v)|\ge |h(z)|\) for all \(z\in {\mathbb C}\) with \(|z|\le R\).
Let \(R{\gt}0\) and \(B\ge 0\). Let \(h(z)\) be a function analytic on \(|z| \le R\). Suppose that \(|h(z)| \le B\) for all \(z\in {\mathbb C}\) with \(|z|= R\). Then there exists \(v\in {\mathbb C}\) with \(|v|=R\) such that \(|h(v)|\ge |h(w)|\) for all \(w\in {\mathbb C}\) with \(|w|\le R\), and \(|h(v)| \le B\).
Apply Lemma 108, and the assumption \(|h(z)| \le B\) with \(z=v\), since \(|v|=R\).
Let \(R{\gt}0\) and \(B\ge 0\). Let \(h(z)\) be a function analytic on \(|z| \le R\). Suppose that \(|h(z)| \le B\) for all \(z\in {\mathbb C}\) with \(|z|= R\). Then \(|h(w)| \le B\) for all \(w\in {\mathbb C}\) with \(|w|\le R\).
Apply Lemma 109. By assumption we calculate \(|h(w)|\le |h(v)| \le B\) for all \(w\in {\mathbb C}\) with \(|w|\le R\).
Let \(R{\gt}0\) and \(B\ge 0\). Let \(h(z)\) be a function analytic on \(|z| \le R\). Suppose that \(|h(w)| \le B\) for all \(w\in {\mathbb C}\) with \(|w|\le R\). Then \(|h(z)| \le B\) for all \(z\in {\mathbb C}\) with \(|z|= R\).
Take \(z\in {\mathbb C}\) with \(|z|= R\). Then \(|z|\le R\), so by assumption with \(w=z\) we have \(|h(z)| \le B\).
Let \(T{\gt}0\) and \(B\ge 0\). Let \(h(z)\) be a function analytic on \(|z| \le T\). We have \(|h(z)| \le B\) for all \(z\in {\mathbb C}\) with \(|z|\le T\) if and only if \(|h(z)| \le B\) for all \(z\in {\mathbb C}\) with \(|z|= T\).
Let \(R,M{\gt}0\). Suppose \(f(z)\) is an analytic function on \(|z|\le R\) satisfying \(\Re (f(z)) \le M\). Then \(2M - f(z) \neq 0\) for all \(|z|\le R\).
For each \(z\) with \(|z|\le R\), apply Lemma 34 with \(w=f(z)\).
Let \(R,M{\gt}0\). Suppose \(f(z)\) is an analytic function on \(|z|\le R\) satisfying \(\Re (f(z)) \le M\). For any \(z\) with \(|z| \le R\), we have \( \frac{|f(z)|}{|2M - f(z)|}\le 1\).
For each \(z\) with \(|z|\le R\), apply Lemma 56 with \(w=f(z)\).
Let \(R{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\). Then the function \(h(z) = f(z)/z\) is analytic on \(|z| \le R\).
Apply ??.
Let \(R{\gt}0\). If \(h_1(z)\) and \(h_2(z)\) are analytic for \(|z|\le R\) and \(h_2(z)\neq 0\) for all \(|z|\le R\), then \(h_1(z)/h_2(z)\) is analytic for \(|z|\le R\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). Define the function \(f_M(z)\) for \(|z| \le R\) as
Let \(a,b\in {\mathbb C}\). If \(b\neq 0\) then \(|a/b| = |a|/|b|\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). We have \(|f_M(z)| = \frac{|f(z)/z|}{|2M - f(z)|}\).
Let \(T{\gt}0\) and \(z,w\in {\mathbb C}\). If \(|z|=T\) then \(|w/z| = |w|/T\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(z\in {\mathbb C}\) with \(|z|=R\), we have \(|f_M(z)| = \frac{|f(z)|/R}{|2M - f(z)|}\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(z\) with \(|z| \le R\), we have \( \frac{|f(z)|/R}{|2M - f(z)|}\le 1/R\).
Apply Lemma 114.
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(z\in {\mathbb C}\) with \(|z|=R\), we have \(|f_M(z)| \le 1/R\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(z\in {\mathbb C}\) with \(|z| \le R\), we have \(|f_M(z)| \le 1/R\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(0{\lt}r{\lt}R\) and any \(z\in {\mathbb C}\) with \(|z|=r\), we have \(|f_M(z)| = \frac{|f(z)|/r}{|2M - f(z)|}\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(0{\lt}r{\lt}R\) and any \(z\in {\mathbb C}\) with \(|z|=r\), we have \(\frac{|f(z)|/r}{|2M - f(z)|} \le 1/R\).
Let \(a,b,r,R{\gt}0\). If \(\frac{a/r}{b} \le 1/R\) then \(Ra \le rb\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(0{\lt}r {\lt} R\) and any \(z\in {\mathbb C}\) with \(|z|=r\), we have \(R|f(z)| \le r|2M - f(z)|\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(0{\lt}r {\lt} R\) and any \(z\in {\mathbb C}\) with \(|z|=r\), we have
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(0{\lt}r {\lt} R\), and any \(z\in {\mathbb C}\) with \(|z|=r\) we have
Apply Lemma 130.
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(0{\lt}r {\lt} R\), and any \(z\in {\mathbb C}\) with \(|z|\le r\) we have
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(0{\lt}r {\lt} R,\)
Apply Lemma 132 and definition of supremum \(\sup _{|z| \le r}\).
1.2 Borel-Carathéodory II
Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\) and any \(r'\) with \(0 {\lt} r {\lt} r' {\lt} R\),
For \(w(t) = r'e^{it}\), we have \(dw = ir'e^{it}dt\).
Differentiate \(w(t)\) with respect to \(t\).
Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\) and any \(r'\) with \(0 {\lt} r {\lt} r' {\lt} R\),
Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\) and any \(r'\) with \(0 {\lt} r {\lt} r' {\lt} R\),
Apply Lemma 136 and cancel \(i\) from the numerator and denominator.
Let \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\), we have \(|f'(z)| = \left|\frac{1}{2\pi } \int _{0}^{2\pi } \frac{f(r'e^{it}) r'e^{it}}{(r'e^{it}-z)^2}\, dt \right|\).
Apply modulus to both sides of the equality in Lemma 137.
For an integrable function \(g(t)\), we have \(|\int _a^b g(t) dt| \le \int _a^b |g(t)| dt\).
Let \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\), we have \(|f'(z)| \le \frac{1}{2\pi } \int _{0}^{2\pi } \left|\frac{f(r'e^{it}) r'e^{it}}{(r'e^{it}-z)^2} \right| \, dt\).
Let \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\), we have \(|f(r'e^{it}) r'e^{it}| = |f(r'e^{it})| \cdot |r'e^{it}|\).
Apply modulus property \(|ab|=|a||b|\).
For \(t\in {\mathbb R}\) we have \(|e^{it}| = e^{\Re (it)}\)
For \(t\in {\mathbb R}\) we have \(\Re (it) = 0\)
For \(t\in {\mathbb R}\) we have \(e^{\Re (it)} =e^0\).
Apply Lemma 143.
We have \(e^0 = 1\).
For \(t\in {\mathbb R}\) we have \(e^{\Re (it)} = 1\)
For \(t\in {\mathbb R}\) we have \(|e^{it}| = 1\)
For \(a{\gt}0\) and \(t\in {\mathbb R}\) we have \(|ae^{it}| = a\)
Apply Lemma 147 and calculate \(|ae^{it}| = |a|\cdot |e^{it}| = a\cdot 1 = a\).
Let \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\), we have \(|f(r'e^{it}) r'e^{it}| = r' |f(r'e^{it})|\).
For any \(c \in {\mathbb C}\), \(|c^2| = |c|^2\).
For any \(w,z \in {\mathbb C}\), \(|(w-z)^2| = |w-z|^2\).
Apply Lemma 150 with \(c=w-z\).
For any \(w, z\in {\mathbb C}\), we have \(|w|-|z| \le |w-z|\).
Let \(t\in {\mathbb R}\) and \(0 {\lt} r {\lt} r' {\lt} R\) and \(z\in {\mathbb C}\), we have \(|r'e^{it}|-|z| \le |r'e^{it}-z|\).
Apply Lemma 152 with \(w=r'e^{it}\).
Let \(t\in {\mathbb R}\) and \(0 {\lt} r {\lt} r' {\lt} R\) and \(z\in {\mathbb C}\), we have \(r' -|z| \le |r'e^{it}-z|\).
Let \(0 {\lt} r {\lt} r' {\lt} R\) and \(z\in {\mathbb C}\) with \(|z|\le r\). Then \(0{\lt}r' - |z|\).
We calculate \(|z| \le r {\lt} r'\) by assumption, so \(0 {\lt} r' - |z|\).
Let \(t\in {\mathbb R}\) and \(0 {\lt} r {\lt} r' {\lt} R\) and \(z\in {\mathbb C}\) and \(z\in {\mathbb C}\) with \(|z|\le r\). Then \(r' - r \le |r'e^{it}-z|\).
Apply Lemma 154 and \(|z|\le r\).
If \(0{\lt}r{\lt}r'\) then \(r'-r{\gt}0\)
Calculation
If \(0{\lt}r{\lt}r'\) then \((r'-r)^2{\gt}0\)
Apply Lemma 157
Let \(t\in {\mathbb R}\) and \(0 {\lt} r {\lt} r' {\lt} R\) and \(z\in {\mathbb C}\)and \(z\in {\mathbb C}\) with \(|z|\le r\). Then \((r' - r)^2 \le |r'e^{it}-z|^2\).
Let \(t\in {\mathbb R}\) and \(0 {\lt} r {\lt} r' {\lt} R\) and \(z\in {\mathbb C}\)and \(z\in {\mathbb C}\) with \(|z|\le r\). Then \(|(r'e^{it}-z)^2| = |r'e^{it}-z|^2\).
Let \(t\in {\mathbb R}\) and \(0 {\lt} r {\lt} r' {\lt} R\) and \(z\in {\mathbb C}\) with \(|z|\le r\), we have \(0 {\lt} |r'e^{it}-z|\).
For \(w\in {\mathbb C}\), if \(|w|{\gt}0\) then \(w\neq 0\).
Let \(t\in {\mathbb R}\) and \(0 {\lt} r {\lt} r' {\lt} R\) and \(z\in {\mathbb C}\) with \(|z|\le r\), we have \(r'e^{it}-z \neq 0\).
Let \(t\in {\mathbb R}\) and \(0 {\lt} r {\lt} r' {\lt} R\) and \(z\in {\mathbb C}\) with \(|z|\le r\), we have \((r'e^{it}-z)^2 \neq 0\).
Apply Lemma 163, and Mathlib mul_self_ne_zero
If \(a,b\in {\mathbb C}\) and \(b\neq 0\) then \(|a/b|=|a|/|b|\).
Let \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\), we have \(\left|\frac{f(r'e^{it}) r'e^{it}}{(r'e^{it}-z)^2}\right| = \frac{|f(r'e^{it}) r'e^{it}|}{|(r'e^{it}-z)^2|}\).
Let \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\), we have \(\left|\frac{f(r'e^{it}) r'e^{it}}{(r'e^{it}-z)^2}\right| = \frac{r'|f(r'e^{it})|}{|(r'e^{it}-z)^2|}\).
Let \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\), we have \(\left|\frac{f(r'e^{it}) r'e^{it}}{(r'e^{it}-z)^2}\right| = \frac{r'|f(r'e^{it})|}{|r'e^{it}-z|^2}\).
Let \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\), we have \(\frac{r'|f(r'e^{it})|}{|r'e^{it}-z|^2} \le \frac{r'|f(r'e^{it})|}{(r'-r)^2}\).
Let \(0 {\lt} r {\lt} r' {\lt} R\). Let \(f\) be analytic on \(|z| \le R\). For any \(z\) with \(|z| \le r\), we have \(\left|\frac{f(r'e^{it}) r'e^{it}}{(r'e^{it}-z)^2}\right| \le \frac{r'|f(r'e^{it})|}{(r'-r)^2}\).
Let \(M,R{\gt}0\) and \(0{\lt}r'{\lt}R\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(t \in {\mathbb R}\) we have \(|f(r'e^{it})| \le \frac{2r' M}{R-r'}\).
Let \(M,R{\gt}0\) and \(0{\lt}r{\lt}r'{\lt}R\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(t \in {\mathbb R}\) we have \(\left|\frac{f(r'e^{it}) r'e^{it}}{(r'e^{it}-z)^2}\right| \le \frac{2(r')^2M}{(R-r')(r'-r)^2}\).
If \(g(t) \le C\) for all \(t \in [a,b]\), then \(\int _a^b g(t) dt \le \int _a^b C dt\).
Let \(M,R{\gt}0\) and \(0{\lt}r{\lt}r'{\lt}R\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(t \in {\mathbb R}\) we have \(|f'(z)| \le \frac{1}{2\pi } \int _{0}^{2\pi } \frac{2(r')^2M}{(R-r')(r'-r)^2} dt\).
We have \(\int _0^{2\pi } dt = 2\pi \).
We have \(\frac{1}{2\pi }\int _0^{2\pi } dt = 1\).
Apply Lemma 175 and simplify.
Let \(M,R{\gt}0\) and \(0{\lt}r{\lt}r'{\lt}R\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). Then we have \(|f'(z)| \le \frac{2(r')^2M}{(R-r')(r'-r)^2}\).
Given \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \(r {\lt} r'\).
Since \(r{\lt}R\), we have \(2r {\lt} r+R\). Dividing by 2 gives \(r {\lt} (r+R)/2\).
Given \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \(r' {\lt} R\).
Since \(r{\lt}R\), we have \(r+R {\lt} 2R\). Dividing by 2 gives \((r+R)/2 {\lt} R\).
Given \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \(r {\lt} r' {\lt} R\).
Given \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \(R-r' = \frac{R-r}{2}\).
We calculate \(R - \frac{r+R}{2} = \frac{2R - (r+R)}{2} = \frac{R-r}{2}\).
Given \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \(r'-r = \frac{R-r}{2}\).
We calculate \(\frac{r+R}{2} - r = \frac{r+R - 2r}{2} = \frac{R-r}{2}\).
Given \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \((R-r')(r'-r)^2 = \frac{(R-r)^3}{8}\).
Given \(M{\gt}0\) and \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \(2(r')^2M = \frac{(R+r)^2 M}{2}\).
We calculate \(2(r')^2M = 2\left(\frac{R+r}{2}\right)^2M = 2\frac{(R+r)^2}{4}M =\frac{(R+r)^2 M}{2}\)
Given \(M{\gt}0\) and \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \(\frac{2(r')^2M}{(R-r')(r'-r)^2} = \frac{(R+r)^2 M/2}{(R-r)^3/8}\).
Given \(M{\gt}0\) and \(0 {\lt} r {\lt} R\), we have \(\frac{(R+r)^2 M/2}{(R-r)^3/8} = \frac{4(R+r)^2 M}{(R-r)^3}\).
Simplify fraction
Given \(M{\gt}0\) and \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \(\frac{2(r')^2M}{(R-r')(r'-r)^2} = \frac{4(R+r)^2 M}{(R-r)^3}\).
Given \(r {\lt} R\), we have \(R+r {\lt} 2R\).
calculation
Given \(0 {\lt} r {\lt} R\), we have \(0 {\lt} R+r\).
Given \(0 {\lt} R\), we have \(2R {\gt} 0\).
If \(0 {\lt} a {\lt} b\), then \(a^2 {\lt} b^2\).
Given e, we have \((R+r)^2 {\lt} (2R)^2\).
For any \(R{\gt}0\), we have \((2R)^2 = 4R^2\).
We calculate \((2R)^2 = 2^2 R^2 = 4R^2\).
Given \(0 {\lt} r {\lt} R\), we have \((R+r)^2 {\lt} 4R^2\).
Given \(M{\gt}0\) and \(0 {\lt} r {\lt} R\), we have \(4(R+r)^2M {\lt} 16R^2M\).
Apply Lemma 194 and multiply by \(4M{\gt}0\).
Given \(M{\gt}0\) and \(0 {\lt} r {\lt} R\), we have \(\frac{4(R+r)^2 M}{(R-r)^3} {\lt} \frac{16R^2 M}{(R-r)^3}\).
Apply Lemma 195 to the numerator of the fraction.
Given \(M{\gt}0\) and \(0 {\lt} r {\lt} R\) with \(r'=\frac{r+R}{2}\), we have \(\frac{2(r')^2M}{(R-r')(r'-r)^2} \leq \frac{16R^2 M}{(R-r)^3}\).
Let \(R,M{\gt}0\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(0{\lt}r {\lt} R\) and any \(|z|\le r\),
1.3 Integral Antiderivative
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Then for any \(z, w \in \overline{{\mathbb D}}_{R}\),
Let the four corners of a rectangle be \(A = z.\operatorname {Re}+ i\, z.\operatorname {Im}\), \(B = w.\operatorname {Re}+ i\, z.\operatorname {Im}\), \(C = w.\operatorname {Re}+ i\, w.\operatorname {Im}\), and \(D = z.\operatorname {Re}+ i\, w.\operatorname {Im}\). Since \(z, w \in \overline{{\mathbb D}}_{R}\), all four corners lie within the closed disk \(\overline{{\mathbb D}}_{R_0}\). The assumption is that \(f\) is analytic on a neighborhood of \(\overline{{\mathbb D}}_{R_0}\). This means there exists an open set \(U\) containing \(\overline{{\mathbb D}}_{R_0}\) on which \(f\) is analytic. The rectangle with corners \(A, B, C, D\) is contained in \(\overline{{\mathbb D}}_{R_0}\), and therefore also in \(U\).
By Cauchy’s Integral Theorem for a rectangle (Mathlib: integral_boundary_rect_eq_zero_of_differentiableOn), the integral of an analytic function over the boundary of the rectangle is zero. We can express this boundary integral as the sum of four path integrals:
We evaluate each integral:
Path from \(A\) to \(B\): \(\zeta (x) = x + i\, z.\operatorname {Im}\) for \(x\) from \(z.\operatorname {Re}\) to \(w.\operatorname {Re}\). So \(d\zeta = dx\).
\[ \int _A^B f(\zeta )\, d\zeta = \int _{z.\operatorname {Re}}^{w.\operatorname {Re}} f(x + i\, z.\operatorname {Im}) \, dx. \]Path from \(B\) to \(C\): \(\zeta (y) = w.\operatorname {Re}+ i\, y\) for \(y\) from \(z.\operatorname {Im}\) to \(w.\operatorname {Im}\). So \(d\zeta = i\, dy\).
\[ \int _B^C f(\zeta )\, d\zeta = i \int _{z.\operatorname {Im}}^{w.\operatorname {Im}} f(w.\operatorname {Re}+ i y) \, dy. \]Path from \(C\) to \(D\): \(\zeta (x) = x + i\, w.\operatorname {Im}\) for \(x\) from \(w.\operatorname {Re}\) to \(z.\operatorname {Re}\). So \(d\zeta = dx\).
\[ \int _C^D f(\zeta )\, d\zeta = \int _{w.\operatorname {Re}}^{z.\operatorname {Re}} f(x + i\, w.\operatorname {Im}) \, dx = - \int _{z.\operatorname {Re}}^{w.\operatorname {Re}} f(x + i\, w.\operatorname {Im}) \, dx. \]Path from \(D\) to \(A\): \(\zeta (y) = z.\operatorname {Re}+ i\, y\) for \(y\) from \(w.\operatorname {Im}\) to \(z.\operatorname {Im}\). So \(d\zeta = i\, dy\).
\[ \int _D^A f(\zeta )\, d\zeta = i \int _{w.\operatorname {Im}}^{z.\operatorname {Im}} f(z.\operatorname {Re}+ i y) \, dy = - i \int _{z.\operatorname {Im}}^{w.\operatorname {Im}} f(z.\operatorname {Re}+ i y) \, dy. \]
Summing these four integrals gives the equation:
Rearranging the terms to match the statement of the lemma concludes the proof.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Define the function \(I_f:\overline{{\mathbb D}}_R\to \mathbb {C}\) by
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
Apply definition 200 with \(z+h\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\). Then
Apply definition 200 with \(z\)
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Apply definition 200 with \(w\), noting that \(w.\operatorname {Re}= (z+h).\operatorname {Re}\) and \(w.\operatorname {Im}= z.\operatorname {Im}\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Apply lemma 199 with the points \(z' := z.\operatorname {Re}\) and \(w' := (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). The four corners of the rectangle are \(z.\operatorname {Re}\), \((z+h).\operatorname {Re}\), \((z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\), and \(z.\operatorname {Re}+ i\, z.\operatorname {Im}\). Substituting \(z'\) and \(w'\) into the formula from lemma 199 yields the desired identity.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
We start with the identity from lemma 206. The assumptions are: \(0{\lt}R{\lt}R_0{\lt}1\), \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analytic on a neighborhood of \(\overline{{\mathbb D}}_{R_0}\), \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) with \(z+h \in \overline{{\mathbb D}}_R\), and \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). The identity is:
By the linearity of integration, we can combine the last two terms:
Substituting this back into the identity gives:
To obtain the desired result, we isolate the term involving the integral over \(\tau \) by moving the other two integral terms to the right-hand side of the equation:
This completes the proof.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
The assumptions are: \(0{\lt}R{\lt}R_0{\lt}1\), \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analytic on a neighborhood of \(\overline{{\mathbb D}}_{R_0}\), \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) with \(z+h \in \overline{{\mathbb D}}_R\), and \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). From lemma 205, we have the expression:
From lemma 207, we have an identity for the second term in the expression above:
We substitute this identity into the expression for \(I_f(w) - I_f(z)\):
The terms \(\int _{z.\operatorname {Re}}^{w.\operatorname {Re}} f(t)\, dt\) and \(-\int _{z.\operatorname {Re}}^{w.\operatorname {Re}} f(t)\, dt\) cancel each other out.
Finally, we use the definition of \(w\), which states \(w.\operatorname {Re}= (z+h).\operatorname {Re}\). Substituting this into the upper limit of the integral gives the final result:
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
The identity follows by starting with the expression for \(I_f(z+h)-I_f(z)\) from lemma 209 and adding and subtracting the term \(f(z)\) within each integrand, which is an algebraic identity.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
We begin with the identity from lemma 210, which holds under the assumptions that \(0{\lt}R{\lt}R_0{\lt}1\), \(f\) is analytic on a neighborhood of \(\overline{{\mathbb D}}_{R_0}\), \(z \in \overline{{\mathbb D}}_R\), and \(h\in {\mathbb C}\) with \(z+h \in \overline{{\mathbb D}}_R\):
We apply the linearity property of the integral, \(\int (g+k) = \int g + \int k\), to each of the two integrals on the right-hand side. For the first integral, we group the integrand as \((f(t + i\, z.\operatorname {Im}) - f(z)) + f(z)\). Applying linearity yields:
For the second integral, we group the integrand as \((f((z+h).\operatorname {Re}+ i\tau ) - f(z)) + f(z)\). Applying linearity yields:
Substituting these expanded forms back into the original equation for \(I_f(z+h)-I_f(z)\), and distributing the factor of \(i\) for the second part, we obtain the desired result:
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
The left side is the integral of the constant function \(w \mapsto f(z)\) over the L-shaped path. Thus we calculate
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
where \(\mathrm{Err}(z,h)\) is defined as
We start with the expression for \(I_f(z+h)-I_f(z)\) from lemma 211. The assumptions are that \(f\) is analytic on a neighborhood of \(\overline{{\mathbb D}}_{R_0}\), \(z \in \overline{{\mathbb D}}_R\), and \(h \in {\mathbb C}\) such that \(z+h \in \overline{{\mathbb D}}_R\).
We can rearrange the terms by grouping them differently:
The first large grouped term is precisely the definition of \(\mathrm{Err}(z,h)\) given in the lemma statement. The second large grouped term is an expression that is evaluated in lemma 212. According to that lemma,
Substituting these two results back into our rearranged equation, we get:
Swapping the terms on the right-hand side gives the final statement.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\) and \(z-h \in \overline{{\mathbb D}}_R\). Let
Then the error term \(\mathrm{Err}(z,h)\) is bounded by:
We begin with the definition of \(\mathrm{Err}(z,h)\) from lemma 213.
We take the modulus and apply the triangle inequality, \(|A+B| \le |A| + |B|\):
Since \(|i|=1\), the second term simplifies to \(\left| \int _{z.\operatorname {Im}}^{(z+h).\operatorname {Im}} (f((z+h).\operatorname {Re}+ i\tau ) - f(z))\, d\tau \right|\). Now we apply the ML-inequality (\(|\int _\gamma g(\zeta )d\zeta | \le \text{length}(\gamma ) \cdot \sup _{\zeta \in \gamma } |g(\zeta )|\)) to each integral.
For the first integral, the path of integration is the line segment from \(z.\operatorname {Re}\) to \((z+h).\operatorname {Re}\). The length of this path is \(|(z+h).\operatorname {Re}- z.\operatorname {Re}| = |h.\operatorname {Re}|\). The supremum of the integrand’s modulus is taken over this path. The integration variable \(t\) is in the interval between \(z.\operatorname {Re}\) and \(z.\operatorname {Re}+h.\operatorname {Re}\). This interval is contained within \([z.\operatorname {Re}- |h.\operatorname {Re}|, z.\operatorname {Re}+ |h.\operatorname {Re}|]\). Therefore, the supremum over the integration path is less than or equal to the supremum over this larger interval, which is \(S_{horiz}(z,h)\).
For the second integral, the path is from \(z.\operatorname {Im}\) to \((z+h).\operatorname {Im}\), with length \(|(z+h).\operatorname {Im}- z.\operatorname {Im}| = |h.\operatorname {Im}|\). Similarly, the supremum of its integrand’s modulus is bounded by \(S_{vert}(z,h)\).
Combining these inequalities, we get:
By definition, \(S(z,h) = \max (S_{horiz}(z,h), S_{vert}(z,h))\). Thus, \(S_{horiz}(z,h) \le S(z,h)\) and \(S_{vert}(z,h) \le S(z,h)\). Substituting these into the inequality gives:
This is the desired result.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\) and \(z-h \in \overline{{\mathbb D}}_R\). Let \(S(z,h)\) be defined as in lemma 214. If \(h \neq 0\) then
We start with the inequality from lemma 214, which holds under the given assumptions.
The lemma includes the explicit assumption that \(h \neq 0\), which implies \(|h| {\gt} 0\). We can therefore divide the inequality by \(|h|\) without changing the direction of the inequality.
Using the property that \(|\frac{A}{B}| = \frac{|A|}{|B|}\) for complex numbers, the left side is equal to \(\left|\frac{\mathrm{Err}(z,h)}{h}\right|\). For any complex number \(h = h.\operatorname {Re}+ i h.\operatorname {Im}\), we know that \(|h.\operatorname {Re}| \le \sqrt{(h.\operatorname {Re})^2 + (h.\operatorname {Im})^2} = |h|\) and \(|h.\operatorname {Im}| \le \sqrt{(h.\operatorname {Re})^2 + (h.\operatorname {Im})^2} = |h|\). Therefore, the sum is bounded: \(|h.\operatorname {Re}| + |h.\operatorname {Im}| \le |h| + |h| = 2|h|\). This gives us a bound for the fraction:
Substituting this bound back into our main inequality, we get:
This completes the proof.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_{R}\). Then with \(S(z,h)\) defined as in lemma 214, we have
The assumption that \(f\) is analytic on a neighborhood of \(\overline{{\mathbb D}}_{R_0}\) implies that \(f\) is continuous at every point in \(\overline{{\mathbb D}}_{R_0}\). In particular, \(f\) is continuous at \(z \in \overline{{\mathbb D}}_{R}\). By the definition of continuity at \(z\), for any \(\epsilon {\gt} 0\), there exists a \(\delta {\gt} 0\) such that for any point \(w\) satisfying \(|w-z| {\lt} \delta \), we have \(|f(w) - f(z)| {\lt} \epsilon \).
We want to show that \(\lim _{h\to 0} S(z,h) = 0\). By definition, \(S(z,h) = \max (S_{horiz}(z,h), S_{vert}(z,h))\). The limit will be zero if we can show that both \(S_{horiz}(z,h)\) and \(S_{vert}(z,h)\) tend to zero.
1. Analysis of \(S_{horiz}(z,h)\): \(S_{horiz}(z,h) = \sup _{t \in [z.\operatorname {Re}- |h.\operatorname {Re}|, z.\operatorname {Re}+ |h.\operatorname {Re}|]} |f(t + i\, z.\operatorname {Im}) - f(z)|\). Let \(w_t = t + i\, z.\operatorname {Im}\) be a point on the horizontal segment. We need to bound \(|w_t - z|\). \(|w_t - z| = |(t + i\, z.\operatorname {Im}) - (z.\operatorname {Re}+ i\, z.\operatorname {Im})| = |t - z.\operatorname {Re}|\). The supremum is over \(t\) such that \(|t - z.\operatorname {Re}| \le |h.\operatorname {Re}|\). Since \(|h.\operatorname {Re}| \le |h|\), we have \(|w_t - z| \le |h|\). If we choose \(|h| {\lt} \delta \), then for all \(t\) in the interval, \(|w_t - z| {\lt} \delta \). By the continuity of \(f\), this implies \(|f(w_t) - f(z)| {\lt} \epsilon \). Since this is true for all values in the set, their supremum must be less than or equal to \(\epsilon \). Thus, for \(|h|{\lt}\delta \), \(S_{horiz}(z,h) \le \epsilon \).
2. Analysis of \(S_{vert}(z,h)\): \(S_{vert}(z,h) = \sup _{\tau \in [z.\operatorname {Im}- |h.\operatorname {Im}|, z.\operatorname {Im}+ |h.\operatorname {Im}|]} |f((z+h).\operatorname {Re}+ i\tau ) - f(z)|\). Let \(w_\tau = (z+h).\operatorname {Re}+ i\tau = (z.\operatorname {Re}+ h.\operatorname {Re}) + i\tau \) be a point on the vertical segment. We bound \(|w_\tau - z|\). \(|w_\tau - z| = |(z.\operatorname {Re}+ h.\operatorname {Re}+ i\tau ) - (z.\operatorname {Re}+ i z.\operatorname {Im})| = |h.\operatorname {Re}+ i(\tau - z.\operatorname {Im})|\). Using the triangle inequality, \(|w_\tau - z| \le |h.\operatorname {Re}| + |i(\tau - z.\operatorname {Im})| = |h.\operatorname {Re}| + |\tau - z.\operatorname {Im}|\). The supremum is over \(\tau \) such that \(|\tau - z.\operatorname {Im}| \le |h.\operatorname {Im}|\). So, \(|w_\tau - z| \le |h.\operatorname {Re}| + |h.\operatorname {Im}|\). We know \(|h.\operatorname {Re}| + |h.\operatorname {Im}| \le 2|h|\). If we choose \(|h| {\lt} \delta /2\), then \(|w_\tau - z| \le 2|h| {\lt} \delta \). By continuity, \(|f(w_\tau ) - f(z)| {\lt} \epsilon \). Thus, for \(|h|{\lt}\delta /2\), \(S_{vert}(z,h) \le \epsilon \).
Given \(\epsilon {\gt} 0\), we can choose \(\delta ' = \delta /2\). Then for any \(h\) with \(|h| {\lt} \delta '\), both \(S_{horiz}(z,h) \le \epsilon \) and \(S_{vert}(z,h) \le \epsilon \). Therefore, \(S(z,h) = \max (S_{horiz}(z,h), S_{vert}(z,h)) \le \epsilon \) for all \(|h| {\lt} \delta '\). This satisfies the definition of the limit, so \(\lim _{h\to 0} S(z,h) = 0\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_{R}\). Then
To prove the limit, we will use the Squeeze Theorem. The limit is taken as \(h \to 0\), so we consider \(h \neq 0\). From lemma 215, we have the inequality for the modulus of the error term ratio:
The modulus of any complex number is non-negative, so we can write:
Now, we take the limit of all parts of the inequality as \(h \to 0\). The lower bound is constant, so \(\lim _{h\to 0} 0 = 0\). For the upper bound, we use lemma 216, which states that \(\lim _{h\to 0} S(z,h) = 0\). Therefore, \(\lim _{h\to 0} 2S(z,h) = 2 \cdot \left(\lim _{h\to 0} S(z,h)\right) = 2 \cdot 0 = 0\). Since \(\left|\frac{\mathrm{Err}(z,h)}{h}\right|\) is squeezed between two functions that both tend to 0 as \(h \to 0\), the Squeeze Theorem (Mathlib: Filter.Tendsto.squeeze’) implies that the limit of the modulus is also 0:
A sequence of complex numbers converges to 0 if and only if the sequence of their moduli converges to 0. Therefore, we can conclude that:
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). The function \(I_f(z)\) is analyticOnNhd \(\overline{{\mathbb D}}_{R}\), and \(I'_f(z)=f(z)\) on \(\overline{{\mathbb D}}_{R}\).
To show that \(I_f(z)\) is differentiable at a point \(z \in \overline{{\mathbb D}}_R\) and that its derivative is \(f(z)\), we must show that the following limit exists and equals \(f(z)\):
We use the decomposition from lemma 213, which states:
For \(h \neq 0\), we can form the difference quotient by dividing by \(h\):
Now, we take the limit as \(h \to 0\):
Using the property that the limit of a sum is the sum of the limits:
The term \(f(z)\) is constant with respect to \(h\), so its limit is \(f(z)\). From lemma 217, we know that \(\lim _{h\to 0} \frac{\mathrm{Err}(z,h)}{h} = 0\). Substituting these results back, we find:
This shows that for any \(z \in \overline{{\mathbb D}}_R\), the derivative \(I'_f(z)\) exists and is equal to \(f(z)\). Since \(f\) is analytic on a neighborhood of \(\overline{{\mathbb D}}_{R_0}\), it is continuous on that neighborhood. This means \(I'_f(z) = f(z)\) is continuous on \(\overline{{\mathbb D}}_R\). A function with a continuous derivative is analytic. To show it is ‘analyticOnNhd‘ \(\overline{{\mathbb D}}_{R}\), we note that since \(R {\lt} R_0\), we can choose an \(R'\) such that \(R {\lt} R' {\lt} R_0\). The entire construction and proof holds for any \(z \in \overline{{\mathbb D}}_{R'}\). This shows that \(I_f\) is differentiable in the open disk \({\mathbb D}_{R'}\), which is an open neighborhood of \(\overline{{\mathbb D}}_{R}\). Therefore, \(I_f\) is analytic on a neighborhood of \(\overline{{\mathbb D}}_{R}\).
1.4 Complex logarithm
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Then the function \(B'(z)/B(z)\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\).
Mathlib: AnalyticOnNhd.div
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Then there exists \(J: \overline{{\mathbb D}}_R\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R}\), such that \(J(0)=0\) and \(J'(z) = B'(z)/B(z)\) for all \(z \in \overline{{\mathbb D}}_R\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Define \(J(z) := I_{B'/B}(z)\) from lemma 220. Define \(H(z) := \exp (J(z))/B(z)\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be from lemma 220. Then \(\exp (J(0)) = 1\).
By lemma 220, we have \(J(0)=0\). Then \(e^0=1\) by Mathlib: Complex.exp_zero.
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(H\) be the function from definition 221. Then \(H(0)=1/B(0)\).
By definition 221 at \(z=0\), \(H(0) = \exp (J(0))/B(0)\). Then apply lemma 222.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). For \(J\) from lemma 220, then \(J'(z)B(z) = B'(z)\) for all \(z \in \overline{{\mathbb D}}_R\).
Apply lemma 220. Since \(B(z) \ne 0\), multiply by \(B(z)\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). For \(J\) from lemma 220, then \(J'(z)B(z) - B'(z) = 0\) for all \(z \in \overline{{\mathbb D}}_R\).
By lemma 224.
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) and \(H\) be the functions from definition 221. The derivative of \(H(z)\) is given by
Apply Mathlib: deriv_div to \(H(z) = \exp (J(z))/B(z)\). \(B(z) \ne 0\) by assumption.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). For \(J\) from lemma 220, then
Apply Mathlib: deriv.scomp_of_eq and AnalyticAt.differentiableAt to the composition \(\exp \circ I\). Here \(J\) analyticOnNhd \(\overline{{\mathbb D}}_{R}\) by lemma 220.
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) and \(H\) be the functions from definition 221. The derivative of \(H(z)\) is given by
By ??.
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) and \(H\) be the functions from definition 221. Then \(H'(z) = 0\) for all \(z \in \overline{{\mathbb D}}_R\).
Apply ??.
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(H\) be from definition 221. Then \(H(z)=H(0)\) for all \(z\in \overline{{\mathbb D}}_R\).
Apply Mathlib: is_const_of_fderiv_eq_zero to lemma 229 with \(H(z)\) on the connected set \(\overline{{\mathbb D}}_R\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\), \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(H\) be the function from definition 221. Then \(H(z)=1/B(0)\) for all \(z \in \overline{{\mathbb D}}_R\).
Apply ??.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). For \(J\) from lemma 220, then \(B(z) = B(0)\exp (J(z))\) for all \(z \in \overline{{\mathbb D}}_R\).
By ??.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then for any \(z \in \overline{{\mathbb D}}_R\),
Apply Mathlib: Complex.abs_exp with \(w = J(z)\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then \(|B(z)| = |B(0)| \cdot |e^{J(z)}|\).
By lemma 232, then apply modulus and Mathlib: abs_mul.
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then \(|B(z)| = |B(0)| \cdot e^{\Re (J(z))}\).
By ??.
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then \(\log |B(z)| = \log |B(0)| + \log (e^{\Re (J(z))})\).
Apply lemma 235 then Mathlib: Real.log_mul.
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then \(\log |B(z)| - \log |B(0)| = \Re (J(z))\).
Apply lemma 236 and Mathlib: Real.log_exp to \(x=\Re (J(z))\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Then there exists \(J_B: \overline{{\mathbb D}}_R\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R}\), such that \(J_B(0)=0\), and \(J_B'(z) = B'(z)/B(z)\) and \(\log |B(z)| - \log |B(0)| = \Re (J_B(z))\) for all \(z \in \overline{{\mathbb D}}_R\).
Apply ??.