- Boxes
- definitions
- Ellipses
- theorems and lemmas
- Blue border
- the statement of this result is ready to be formalized; all prerequisites are done
- Orange border
- the statement of this result is not ready to be formalized; the blueprint needs more work
- Blue background
- the proof of this result is ready to be formalized; all prerequisites are done
- Green border
- the statement of this result is formalized
- Green background
- the proof of this result is formalized
- Dark green background
- the proof of this result and all its ancestors are formalized
- Dark green border
- this is in Mathlib
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). Define the function \(B_f:\overline{{\mathbb D}}_R\to {\mathbb C}\) as \(B_f(z)=C_f(z)\prod _{\rho \in \mathcal K_f(R_1)} (R-\bar\rho z/R)^{m_{\rho ,f}}\).
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). We define the function \(C_f:\overline{{\mathbb D}}_R\to {\mathbb C}\) as follows. This function is constructed by dividing \(f(z)\) by a polynomial whose roots are the zeros of \(f\) inside \(\overline{{\mathbb D}}_{R_1}\). The definition is split into two cases to handle the points where the denominator would otherwise be zero.
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Define \(J(z) := I_{B'/B}(z)\) from lemma 220. Define \(H(z) := \exp (J(z))/B(z)\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Define the function \(I_f:\overline{{\mathbb D}}_R\to \mathbb {C}\) by
Let \(0{\lt}R{\lt}1\), \(B{\gt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Define \(L_f(z) = J_{B_f}(z)\) from lemma 238, where \(B_f\) from definition 275.
Let \(0{\lt}R_1{\lt}1\) and \(f:{\mathbb C}\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\). For any zero \(\rho \in \mathcal K_f(R_1)\) of the function \(f\), we define \(m_{\rho ,f}\) as the analytic order of \(f\) at \(\rho \), denoted by analyticOrderAt \(f\) \(\rho \).
The function \(f_1(z) = \frac{1}{z}\) is analytic on \(\{ z\in {\mathbb C}: z \neq 0\} \).
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\), we have
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\), we have
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\),
converges.
For \(t\in {\mathbb R}\) and \(\delta {\gt}0\), we have
Let \(T=\{ z\in \ \overline{{\mathbb D}}_R : z\neq 0\} \) and \(f_1:{\mathbb C}\to {\mathbb C}\) and \(f_2:{\mathbb C}\to {\mathbb C}\). If \(f_1\) is analytic on \(T\) and \(f_2\) is analytic on \(\overline{{\mathbb D}}_R\), then \(f_1\cdot f_2\) is analytic on \(T\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). For \(J\) from lemma 220, then \(B(z) = B(0)\exp (J(z))\) for all \(z \in \overline{{\mathbb D}}_R\).
Let \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For each \(\sigma \in \mathcal{K}_f(R_1)\), there exists a function \(h_\sigma (z)\) that is AnalyticAt \(\sigma \), and \(h_\sigma (\sigma ) \neq 0\), and \(f(z) = (z-\sigma )^{m_{\sigma ,f}} h_\sigma (z)\) Eventually for \(z\) in nbhds of \(\sigma \).
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then the function \(B_f(z)\) is never equal to zero, and differentiableAt \(z\) for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\).
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For \(z\in \overline{{\mathbb D}}_R\setminus \mathcal K_f(R_1)\), we have
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For \(z\in \overline{{\mathbb D}}_R\setminus \mathcal K_f(R_1)\), we have
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For \(z\in \overline{{\mathbb D}}_R\setminus \mathcal K_f(R_1)\), we have
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For \(z\in \overline{{\mathbb D}}_R\setminus \mathcal K_f(R_1)\), we have
Let \(0{\lt}R_1{\lt}R{\lt}1\) and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then the function \(z \mapsto \prod _{\rho \in \mathcal K_f(R_1)} (R-\bar\rho z/R)^{m_{\rho ,f}}\) is differentiableAt \(z\) for all \(z\in \overline{{\mathbb D}}_{R}\).
Let \(0{\lt}R_1{\lt}R{\lt}1\) and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then \(\prod _{\rho \in \mathcal K_f(R_1)} (R-\bar\rho z/R)^{m_{\rho ,f}}\neq 0\) for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\).
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for any \(\rho \in \mathcal{K}_f(R_1)\), the function \(z \mapsto \frac{R-\bar\rho z/R}{z-\rho }\) is never equal to zero, and differentiableAt \(z\) for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\).
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{D}_{R_1}\) with \(f(0)=1\). Then for any \(\rho \in \mathcal{K}_f(R_1)\), the function \(z \mapsto R-\bar\rho z/R\) is never equal to zero, and differentiableAt \(z\) for all \(z\in \overline{{\mathbb D}}_1\).
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for any \(\rho \in \mathcal{K}_f(R_1)\), the function \(z \mapsto (\frac{R-\bar\rho z/R}{z-\rho })^{m_{\rho ,f}}\) is never equal to zero, and differentiableAt \(z\) for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\).
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then the function \(z \mapsto \prod _{\rho \in \mathcal K_f(R_1)} (\frac{R-\bar\rho z/R}{z-\rho })^{m_{\rho ,f}}\) is never equal to zero, and differentiableAt \(z\) for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\) and \(z-h \in \overline{{\mathbb D}}_R\). Let
Then the error term \(\mathrm{Err}(z,h)\) is bounded by:
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\) and \(z-h \in \overline{{\mathbb D}}_R\). Let \(S(z,h)\) be defined as in lemma 214. If \(h \neq 0\) then
Let \(M,R{\gt}0\) and \(0{\lt}r{\lt}r'{\lt}R\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(t \in {\mathbb R}\) we have \(\left|\frac{f(r'e^{it}) r'e^{it}}{(r'e^{it}-z)^2}\right| \le \frac{2(r')^2M}{(R-r')(r'-r)^2}\).
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). Then for every \(\sigma \in \mathcal{K}_f(R_1)\), the function \(C_f(z)\) is analyticAt \(\sigma \).
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). Then \(C_f(z)\) is analyticAt \(z\) for all \(z \in \overline{{\mathbb D}}_R \setminus \mathcal{K}_f(R_1)\).
Let \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For each \(\sigma \in \mathcal{K}_f(R_1)\), we have Eventually for \(z\) in nbhds of \(\sigma \),
Let \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For each \(\sigma \in \mathcal{K}_f(R_1)\), we have Eventually for \(z\) in nbhds of \(\sigma \), if \(z\neq \sigma \) then
Let \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For each \(\sigma \in \mathcal{K}_f(R_1)\), we have Eventually for \(z\) in nbhds of \(\sigma \), if \(z\neq \sigma \) then
Let \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For each \(\sigma \in \mathcal{K}_f(R_1)\), we have Eventually for \(z\) in nbhds of \(\sigma \), if \(z=\sigma \) then
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). Then \(C_f(z)\neq 0\) for all \(z \in \overline{{\mathbb D}}_{R_1} \setminus \mathcal{K}_f(R_1)\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Then for any \(z, w \in \overline{{\mathbb D}}_{R}\),
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\), \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\), and let \(w = (z+h).\operatorname {Re}+ i\, z.\operatorname {Im}\). Then
Let \(r_1{\gt}0\), \(c\in {\mathbb C}\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). We have \(z\in \overline{{\mathbb D}}_{r_1} \setminus \mathcal K_{f_c}(R_1)\) if and only if \(z+c\in \overline{{\mathbb D}}_{r_1}(c) \setminus \mathcal K_{f}(R_1;c)\)
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be from lemma 220. Then \(\exp (J(0)) = 1\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). For \(J\) from lemma 220, then
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), we have
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), we have
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\), we have
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then the function \(f(z)\) is never equal to zero, and differentiableAt \(z\) for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\).
Let \(M,R{\gt}0\) and \(0{\lt}r{\lt}r'{\lt}R\). Let \(f\) be analytic on \(|z| \le R\) such that \(f(0)=0\) and suppose \(\Re f(z) \le M\) for all \(|z| \le R\). For any \(t \in {\mathbb R}\) we have \(|f'(z)| \le \frac{1}{2\pi } \int _{0}^{2\pi } \frac{2(r')^2M}{(R-r')(r'-r)^2} dt\).
Let \(B{\gt}1\), \(0{\lt}R{\lt}1\), \(c\in {\mathbb C}\), and \(f:{\mathbb C}\to {\mathbb C}\) with \(f(c)\neq 0\). If \(|f(z)|\le B\) for all \(z\in \overline{{\mathbb D}}_R(c)\), then the function \(f_c(z) = f(z+c)/f(c)\) satisfies \(|f_c(z)| \le B/|f(c)|\) for all \(z\overline{{\mathbb D}}_R\).
Let \(c\in {\mathbb C}\) and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). Then for any \(z\) where \(f(z+c) \neq 0\), we have \(\text{logDeriv}(f_c)(z) = \text{logDeriv}(f)(z+c)\).
Let \(r{\gt}0\), \(c\in {\mathbb C}\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). For \(\rho \in \mathcal{K}_{f_c}(r)\), the analyticOrderAt satisfies \(m_{\rho ,f_c} = m_{\rho +c,f}\).
Let \(r{\gt}0\), \(c\in {\mathbb C}\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). We have \(\rho '\in \mathcal{K}_{f_c}(r)\) if and only if \(\rho '=\rho -c\) where \(\rho \in \mathcal{K}_f(r;c)\). In particular \(\mathcal{K}_{f_c}(r) = \{ \rho -c : \rho \in \mathcal{K}_f(r) \} \).
Let \(B{\gt}1\), \(0{\lt}r_1{\lt}r{\lt}R_1{\lt}R{\lt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). If \(|f(z)|\le B\) on \(|z|\le R\), then for all \(z\in \overline{{\mathbb D}}_{r_1}\setminus \mathcal K_f(R_1)\) we have
Let \(B{\gt}1\), \(0{\lt}r_1{\lt}r{\lt}R_1{\lt}R{\lt}1\). Let \(c\in {\mathbb C}\) and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). If \(|f(z)| {\lt} B\) for all \(z\in \overline{{\mathbb D}}_R(c)\), then for all \(z\in \overline{{\mathbb D}}_{r_1} \setminus \mathcal K_{f_c}(R_1)\) we have
Let \(B{\gt}1\), \(0{\lt}r_1{\lt}r{\lt}R_1{\lt}R{\lt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). If \(|f(z)|\le B\) on \(|z|\le R\), then for all \(z\in \overline{{\mathbb D}}_{r_1} \setminus \mathcal K_f(R_1)\) we have
Let \(B{\gt}1\), \(0{\lt}R_1{\lt} R{\lt}1\) and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). If \(|f(z)|\le B\) on \(|z|\le R\), then for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\) we have
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(H\) be the function from definition 221. Then \(H(0)=1/B(0)\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) and \(H\) be the functions from definition 221. The derivative of \(H(z)\) is given by
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) and \(H\) be the functions from definition 221. Then \(H'(z) = 0\) for all \(z \in \overline{{\mathbb D}}_R\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) and \(H\) be the functions from definition 221. The derivative of \(H(z)\) is given by
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(H\) be from definition 221. Then \(H(z)=H(0)\) for all \(z\in \overline{{\mathbb D}}_R\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\), \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(H\) be the function from definition 221. Then \(H(z)=1/B(0)\) for all \(z \in \overline{{\mathbb D}}_R\).
Let \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For each \(\sigma \in \mathcal{K}_f(R_1)\), the function \(\frac{h_\sigma (z)}{\prod _{\rho \in \mathcal{K}_f(R_1) \setminus \{ \sigma \} }(z-\rho )^{m_{\rho ,f}}}\) is analyticAt \(\sigma \).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Then there exists \(J: \overline{{\mathbb D}}_R\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R}\), such that \(J(0)=0\) and \(J'(z) = B'(z)/B(z)\) for all \(z \in \overline{{\mathbb D}}_R\).
Let \(0{\lt}R{\lt}1\) and \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be analytic. Suppose there exists \(\rho _0\in \overline{{\mathbb D}}_R\) an accumulation point of \(\{ \rho \in {\mathbb D}_1 : f(\rho )=0\} \). Then \(f(z)=0\) for all \(z\in {\mathbb D}_1\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
where \(\mathrm{Err}(z,h)\) is defined as
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). The function \(I_f(z)\) is analyticOnNhd \(\overline{{\mathbb D}}_{R}\), and \(I'_f(z)=f(z)\) on \(\overline{{\mathbb D}}_{R}\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_R\) and \(h\in {\mathbb C}\) satisfy \(z+h \in \overline{{\mathbb D}}_R\). Then
Let \(B{\gt}1\), \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\). If \(f(0)=1\) and \(|f(z)|\le B\) on \(|z|\le R\), then \(\sum _{\rho \in \mathcal K_f(R_1)} m_\rho \log (3/2) \le \log B\).
Let \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For any \(\sigma ,\rho \in \mathcal{K}_f(R_1)\) with \(\sigma \neq \rho \), Eventually for \(z\) in nbhds of \(\sigma \), we have \(z\neq \rho \).
Let \(0{\lt}r{\lt}R_1{\lt}R\), \(R {\lt} 1\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{r}\setminus \mathcal K_f(R_1)\) we have
Let \(0{\lt}r{\lt}R_1{\lt}R{\lt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{r}\setminus \mathcal K_f(R_1)\) we have
Let \(0{\lt}r{\lt}R_1{\lt}R\), \(R {\lt} 1\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{r}\setminus \mathcal K_f(R_1)\) we have
Let \(0{\lt}r{\lt}R_1{\lt}R\), \(R {\lt} 1\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{r}\setminus \mathcal K_f(R_1)\) we have \(L'_f(z)=\frac{f'}{f}(z) + \sum _{\rho \in \mathcal K_f(R_1)}m_{\rho ,f}\left( \frac{1}{z-R^2/\bar\rho } - \frac{1}{z-\rho }\right)\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(f:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\). Let \(z \in \overline{{\mathbb D}}_{R}\). Then with \(S(z,h)\) defined as in lemma 214, we have
Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\). Let \(c=3/2+it\), \(B{\gt}1\), \(0{\lt}r_1{\lt}r{\lt}R_1{\lt}R{\lt}1\). If \(|\zeta (z)| {\lt} B\) for all \(z\in \overline{{\mathbb D}}_R(c)\), then for all \(z\in \overline{{\mathbb D}}_{r_1}(c)\setminus \mathcal K_\zeta (R_1;c)\) we have
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). For \(J\) from lemma 220, then \(J'(z)B(z) = B'(z)\) for all \(z \in \overline{{\mathbb D}}_R\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). For \(J\) from lemma 220, then \(J'(z)B(z) - B'(z) = 0\) for all \(z \in \overline{{\mathbb D}}_R\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Then the function \(B'(z)/B(z)\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then \(\log |B(z)| = \log |B(0)| + \log (e^{\Re (J(z))})\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Then there exists \(J_B: \overline{{\mathbb D}}_R\to \mathbb {C}\) analyticOnNhd \(\overline{{\mathbb D}}_{R}\), such that \(J_B(0)=0\), and \(J_B'(z) = B'(z)/B(z)\) and \(\log |B(z)| - \log |B(0)| = \Re (J_B(z))\) for all \(z \in \overline{{\mathbb D}}_R\).
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\) we have
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\) and \(\rho \in \mathcal{K}_f(R_1)\) we have
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\). For \(\rho \in \mathcal{K}_f(R_1)\), we have \(\text{logDeriv}\left(\frac{R-z\bar\rho /R}{z-\rho }\right) = \frac{1}{z-R^2/\bar\rho } - \frac{1}{z-\rho }\).
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\) we have
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\) and \(\rho \in \mathcal K_f(R_1)\) we have
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\) we have
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\) we have
Let \(K\) be a finite set and \(\{ g_\rho (z)\} _{\rho \in K}\) be a collection of functions differentiableAt \(z\) with \(g_\rho (z)\neq 0\) for all \(\rho \in K\). Then \(\text{logDeriv}(\prod _{\rho \in K} g_\rho (z)) = \sum _{\rho \in K} \text{logDeriv}(g_\rho (z))\).
There exist constants \(A\in (0,\tfrac 12)\) and \(C{\gt}0\) such that for every real \(t\) with \(|t|{\gt}3\) and every real \(\sigma \) with
the logarithmic derivative of the Riemann zeta function satisfies the uniform bound
The constants \(A,C\) are absolute (independent of \(\sigma \) and \(t\)) and give a uniform control of \(\zeta '/\zeta \) in the stated region.
Let \(R{\gt}0\) and \(B\ge 0\). Let \(h(z)\) be a function analytic on \(|z| \le R\). Suppose that \(|h(z)| \le B\) for all \(z\in {\mathbb C}\) with \(|z|= R\). Then there exists \(v\in {\mathbb C}\) with \(|v|=R\) such that \(|h(v)|\ge |h(w)|\) for all \(w\in {\mathbb C}\) with \(|w|\le R\), and \(|h(v)| \le B\).
Let \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\). If \(\mathcal K_f(R_1)\) if finite, then \(z\in \overline{{\mathbb D}}_R\setminus \mathcal K_f(R_1)\), we have
.
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then \(|B(z)| = |B(0)| \cdot |e^{J(z)}|\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), and assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) and \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then for any \(z \in \overline{{\mathbb D}}_R\),
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then \(|B(z)| = |B(0)| \cdot e^{\Re (J(z))}\).
Let \(f:{\mathbb C}\to {\mathbb C}\) be analytic at \(0\), and let \(n_0\) be the analyticOrderAt for \(f\) at \(0\). If \(n_0\in {\mathbb N}\) then there exists a nhd \(N\) of \(0\) and \(g:{\mathbb C}\to {\mathbb C}\) such that \(g\) is analytic at \(0\), and \(f(z) = z^{n_0} g(z)\) on \(N\).
Let \(f:{\mathbb C}\to {\mathbb C}\) be analytic at \(0\), and let \(n_0\) be the analyticOrderAt for \(f\) at \(0\). If \(n_0\in {\mathbb N}\) and \(n_0\neq 0\), then there exists a nhd \(N\) of \(0\) and \(h:{\mathbb C}\to {\mathbb C}\) such that \(h\) is analytic at \(0\), and \(f(z) = zh(z)\) on \(N\).
Let \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For each \(\sigma \in \mathcal{K}_f(R_1)\) we have
Let \(f:\overline{{\mathbb D}}_1\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)\neq 0\). For each \(\sigma \in \mathcal{K}_f(R_1)\) and \(z\notin \mathcal{K}_f(R_1)\), we have
Let \(w\in {\mathbb C}\), \(0{\lt}R_1{\lt}R{\lt}1\), and \(h:\overline{{\mathbb D}}_R\to {\mathbb C}\) be a function that is AnalyticAt \(w\). Let \(S \subset \overline{{\mathbb D}}_{R_1}\) be a finite set, and for each \(s \in S\), let \(n_s \in \mathbb {N}\) be a positive integer. Then for all \(w\in \overline{{\mathbb D}}_1\setminus S\), the function \(h(z)/\prod _{s \in S} (z-s)^{n_s}\) is analyticAt \(w\).
Let \(0{\lt}R{\lt}R_0{\lt}1\), assume \(B:\overline{{\mathbb D}}_{R_0}\to \mathbb {C}\) is analyticOnNhd \(\overline{{\mathbb D}}_{R_0}\) with \(B(z) \ne 0\) for all \(z \in \overline{{\mathbb D}}_{R_0}\). Let \(J\) be the function from lemma 220. Then \(\log |B(z)| - \log |B(0)| = \Re (J(z))\).
Let \(0{\lt}r{\lt}R_1{\lt}R\), \(R {\lt} 1\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{r}\setminus \mathcal K_f(R_1)\) we have
Let \(B{\gt}1\), \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\). If \(f(0)=1\) and \(|f(z)|\le B\) on \(|z|\le R\), then \(\sum _{\rho \in \mathcal K_f(R_1)} 1 \le \frac{\log B}{\log (R/R_1)}\).
Let \(0{\lt}R_1{\lt}R{\lt}1\) and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\) we have
Let \(B{\gt}1\), \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1\). If \(f(0)=1\) and \(|f(z)|\le B\) on \(|z|\le R\), then \(\sum _{\rho \in \mathcal K_f(R_1)} m_\rho \le \frac{\log B}{\log (R/R_1)}\).
Let \(B{\gt}1\), \(0{\lt}R_1{\lt}R{\lt}1\), and \(f:{\mathbb C}\to {\mathbb C}\) be a function that is AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\). If \(f(c)\neq 0\) and \(|f(z)|\le B\) on \(z\in \overline{{\mathbb D}}_R(c)\), then \(\sum _{\rho \in \mathcal K_f(R_1;c)} m_{\rho ,f} \le \frac{\log (B/|f(c)|)}{\log (R/R_1)}\).
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\) we have
For all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
There exists a constant \(C_3{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
There exists a constant \(C_4{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
For \(t\in {\mathbb R}\) and \(0{\lt}\delta {\lt}1\), we have
For \(t\in {\mathbb R}\) and \(0{\lt}\delta {\lt}1\), we have
Let \(0{\lt}r{\lt}R_1{\lt}R\), \(R {\lt} 1\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for all \(z\in \overline{{\mathbb D}}_{r}\setminus \mathcal K_f(R_1)\) we have
For all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
For \(0{\lt}\delta {\lt}1\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
For \(0{\lt}\delta {\lt}1\), \(\sigma , t\in {\mathbb R}\), and \(\rho =\sigma +it\in \mathcal Z\) we have
There exists a constant \(C{\gt}0\) such that for all \(0{\lt}\delta {\lt}1\) and \(t\in {\mathbb R}\) with \(|t|{\gt}3\), if \(\sigma +it\in \mathcal{Z}\) then
Let \(0{\lt}R{\lt}1\), \(R_1=\frac{2}{3}R\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1\) with \(f(0)=1\). Then for any \(\rho \in \mathcal{K}_f(R_1)\), the function \(z \mapsto z-\rho \) is never equal to zero, and differentiableAt \(z\) for all \(z\in \overline{{\mathbb D}}_{R_1}\setminus \mathcal K_f(R_1)\).
There exists a constant \(A{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), \(c=3/2+it\), \(B{\gt}1\), \(0{\lt}r_1{\lt}r{\lt}R_1{\lt}R{\lt}1\), \(z\in \overline{{\mathbb D}}_{r_1}(c)\setminus \mathcal K_\zeta (R_1;c)\) we have
Let \(0{\lt} r_1 {\lt} r {\lt} 5/6\). There exists constants \(C{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), \(c=3/2+it\), and \(z\in \overline{{\mathbb D}}_{r_1}(c)\setminus \mathcal K_\zeta (5/6;c)\) we have
There exists a constant \(C_1{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
There exists a constant \(C_1{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), and all \(z=\sigma +it\) with \(1-\delta _t \le \sigma \le 3/2\) we have
There exists a constant \(A\in (0,\tfrac 12)\) such that for every real \(t\) with \(|t|{\gt}3\) and every real \(\sigma \) with
we have
In other words, a uniform zero-free region of the form \(\Re s \ge 1 - A/\log |\Im s|\) holds for large \(|\Im s|\).