Strong PNT

3 Riemann Zeta Function

3.1 Zeta lower bound

Definition 384 Prime set
#

Let \(\mathcal{P}\) be Nat.Primes

Lemma 385 Prime decay
#

For \(p\in \mathcal{P}\) and \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(|p^{-s}|{\lt}1\).

Proof

Let \(\sigma = \Re (s)\). By hypothesis, \(\sigma {\gt} 1\). By Lemma 404, we have \(|p^{-s}| = p^{-\sigma }\). Since \(p\in \mathcal{P}\), we have \(p\ge 2\). As \(\sigma {\gt}1\), it follows that \(p^\sigma {\gt} p^1 \ge 2\). Therefore, \(p^{-\sigma } = 1/p^\sigma {\lt} 1\).

Lemma 386 Euler product
#

For \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), the function \(w_s(p)=(1-p^{-s})^{-1}\) is multipliable, and we have \(\zeta (s) = \prod '_{p\in \mathcal{P}}(1-p^{-s})^{-1}\).

Proof

Mathlib: riemannZeta_eulerProduct_hasProd, riemannZeta_eulerProduct_tprod,

Lemma 387 Abs product
#

Let \(P\) be a set and \(w:P\to {\mathbb C}\) be multipliable. Then \(|\prod '_{p\in P} w(p)| = \prod '_{p \in P} |w(p)|\).

Proof

Mathlib: abs_tprod

Lemma 388 Abs primes
#

For \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(|\prod '_{p\in \mathcal{P}}(1-p^{-s})^{-1}| = \prod '_{p\in \mathcal{P}}|(1-p^{-s})^{-1}|\).

Proof

By ?? with \(P=\mathcal{P}\) and \(w(p) = (1-p^{-s})^{-1}\), which is multipiable.

Lemma 389 Abs zeta
#

For \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(|\zeta (s)| = \prod '_{p\in \mathcal{P}}|(1-p^{-s})^{-1}|\).

Proof

By ??.

Lemma 390 Abs inverse
#

For \(z\in {\mathbb C}\), if \(z\neq 0\) then \(|z^{-1}| = |z|^{-1}\).

Proof

Mathlib: abs_inv

Lemma 391 Nonzero factor
#

For \(p\in \mathcal{P}\) and \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(1-p^{-s}\neq 0\).

Proof

By lemma 385.

Lemma 392 Abs product

For \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(|\zeta (s)| = \prod '_{p\in \mathcal{P}}|1-p^{-s}|^{-1}\).

Proof

Apply lemma 389 and lemma 390 with \(z=1-p^{-s}\). Note \(z\neq 0\) by lemma 391.

Lemma 393 Real double
#

For \(s\in {\mathbb C}\) we have \(\Re (2s)=2\Re (s)\).

Proof
Lemma 394 Real bound
#

For \(s\in {\mathbb C}\), if \(\Re (s){\gt}1\) then \(\Re (2s){\gt}1\).

Proof

By lemma 393 and assumption \(\Re (s){\gt}1\).

Lemma 395 Zeta ratio
#

For \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(\frac{\zeta (2s)}{\zeta (s)} = \frac{\prod '_{p\in \mathcal{P}}(1-p^{-2s})^{-1}}{\prod '_{p\in \mathcal{P}}(1-p^{-s})^{-1}}\).

Proof

Apply Lemma 386 twice, to both \(\zeta (2s)\) and \(\zeta (s)\). Use condition lemma 394.

Lemma 396 Ratio product
#

Let \(P\) be a set, and \(a(p):P\to {\mathbb C}\) and \(b(p):P\to {\mathbb C}\) be multipliable. Then \( \frac{\prod '_{p\in P} a(p)}{\prod '_{p\in P} b(p)} = \prod '_{p\in P} \frac{a(p)}{b(p)}\).

Proof

We proceed by cases on whether \(a\) ever takes the value zero.

Case 1: There exists \(p_0 \in P\) such that \(a(p_0) = 0\).

In this case, the infinite product \(\prod _{p \in P}' a(p)\) contains the factor \(a(p_0) = 0\), and therefore:

\[ \prod _{p \in P}' a(p) = 0 \]

Similarly, the quotient function \(p \mapsto a(p)/b(p)\) satisfies \((a/b)(p_0) = a(p_0)/b(p_0) = 0/b(p_0) = 0\), so:

\[ \prod _{p \in P}' \frac{a(p)}{b(p)} = 0 \]

Therefore, both sides of the desired equality equal zero:

\[ \frac{\prod _{p \in P}' a(p)}{\prod _{p \in P}' b(p)} = \frac{0}{\prod _{p \in P}' b(p)} = 0 = \prod _{p \in P}' \frac{a(p)}{b(p)} \]

Case 2: For all \(p \in P\), \(a(p) \neq 0\).

In this case, our hypotheses are that both \(a\) and \(b\) are multipliable and map to non-zero values everywhere. Our strategy is to apply Assumption tprod_div, but doing so requires careful reasoning about the algebraic structures involved.

The Obstacle Assumption tprod_div requires the functions to map into a Commutative Group. The field of complex numbers, \({\mathbb C}\), is not a commutative group under multiplication because the element \(0\) lacks a multiplicative inverse. Therefore, we cannot directly apply the theorem to our functions \(a\) and \(b\).

The Strategy: Lifting to the Group of Units The solution is to work within the group of units of \({\mathbb C}\), denoted \({\mathbb C}^\times \), which is the set of non-zero complex numbers \({\mathbb C}\setminus \{ 0\} \). This set is a commutative group under multiplication. Since we are in the case where \(a(p)\) and \(b(p)\) are always non-zero, we can "lift" our functions to have \({\mathbb C}^\times \) as their codomain.

Defining the Lifted Functions We define two new unit-valued functions, \(u\) and \(v\):

\begin{align} u : P & \to {\mathbb C}^\times , \quad u(p) := a(p) \\ v : P & \to {\mathbb C}^\times , \quad v(p) := b(p) \end{align}

These functions are well-defined because our case assumption (\(\forall p, a(p) \neq 0\)) and the given hypothesis (\(\forall p, b(p) \neq 0\)) guarantee their outputs are always in \({\mathbb C}^\times \).

Multipliability of the Lifted Functions The multipliability of \(u\) and \(v\) follows directly from that of \(a\) and \(b\). A function’s multipliability depends on the summability of \(|f(p) - 1|\) over its support. Since the values of \(u(p)\) and \(a(p)\) are identical (and likewise for \(v\) and \(b\)), their multipliability properties are preserved.

  • \(\{ p : u(p) \neq 1\} = \{ p : a(p) \neq 1\} \) is countable (since \(a\) is multipliable).

  • \(\sum _{p} |u(p) - 1| = \sum _{p} |a(p) - 1| {\lt} \infty \) (since \(a\) is multipliable).

  • Similarly for \(v\) and \(b\).

Applying the Division Theorem With \(u\) and \(v\) established as multipliable functions into the commutative group \({\mathbb C}^\times \), we can now safely apply Assumption tprod_div. This gives us an equality that holds within \({\mathbb C}^\times \):

\begin{equation} \frac{\prod _{p \in P}' u(p)}{\prod _{p \in P}' v(p)} = \prod _{p \in P}' \frac{u(p)}{v(p)} \label{eq:units_div} \end{equation}
3

Returning to \({\mathbb C}\) Our final step is to show that this equality in \({\mathbb C}^\times \) implies the desired equality in \({\mathbb C}\). This is true because the natural inclusion (coercion) from \({\mathbb C}^\times \) to \({\mathbb C}\) preserves the algebraic operations of division and infinite products. Since \(\text{coe}(u(p)) = a(p)\) and \(\text{coe}(v(p)) = b(p)\), applying this coercion to both sides of Equation (??) directly yields our goal:

\[ \frac{\prod _{p \in P}' a(p)}{\prod _{p \in P}' b(p)} = \prod _{p \in P}' \frac{a(p)}{b(p)} \]

In both cases, the desired equality holds.

Lemma 397 Ratio split

For \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(\frac{\prod '_{p\in \mathcal{P}}(1-p^{-2s})^{-1}}{\prod '_{p\in \mathcal{P}}(1-p^{-s})^{-1}} = \prod '_{p\in \mathcal{P}}\frac{(1-p^{-2s})^{-1}}{(1-p^{-s})^{-1}}\).

Proof

By lemma 396 with \(a(p)=(1-p^{-2s})^{-1}\) and \(b(p)=(1-p^{-s})^{-1}\). Multipliability holds by lemma 386, and use condition lemma 394.

Lemma 398 Ratio form
#

For \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(\frac{\zeta (2s)}{\zeta (s)} = \prod '_{p\in \mathcal{P}}\frac{(1-p^{-2s})^{-1}}{(1-p^{-s})^{-1}}\).

Proof

By ??.

Lemma 399 Diff squares
#

For any \(z\in {\mathbb C}\), we have \((1-z^2) = (1-z)(1+z)\).

Proof

Basic algebra

Lemma 400 Inverse ratio
#

For any \(z\in {\mathbb C}\). If \(|z|{\lt}1\) then \(\frac{(1-z^2)^{-1}}{(1-z)^{-1}} = (1+z)^{-1}\).

Proof

By lemma 399, then invert terms and simplify. Note \(|z|{\lt}1\) implies \(z\neq \pm 1\) so we may invert \(1-z\) and \(1+z\) and \(1-z^2\).

Theorem 401 Ratio identity

For \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(\frac{\zeta (2s)}{\zeta (s)} = \prod '_{p\in \mathcal{P}}(1+p^{-s})^{-1}\).

Proof

Apply Lemma 398 and Lemma 400 with \(z=p^{-s}\). We verify condition using lemma 385.

Lemma 402 Three halves
#

We have \(\frac{\zeta (3)}{\zeta (3/2)} = \prod '_{p\in \mathcal{P}}(1+p^{-3/2})^{-1}\).

Proof

Apply Theorem 401 with \(s=3/2\). Note \(\Re (3/2)=3/2{\gt}1\).

Lemma 403 Triangle abs
#

For any \(z\in {\mathbb C}\), we have \(|1-z| \le 1+|z|\).

Proof

By the triangle inequality, \(|a+b| \le |a|+|b|\). Let \(a=1\) and \(b=-z\). Then \(|1-z| \le |1|+|-z| = 1+|z|\).

Lemma 404 Prime power
#

For \(p\in \mathcal{P}\) and \(s=\sigma +it \in {\mathbb C}\), we have \(|p^{-s}| = p^{-\sigma }\).

Proof

\(|p^{-s}| = |p^{-\sigma -it}| = |p^{-\sigma }p^{-it}| = |p^{-\sigma }||e^{-it\log p}| = p^{-\sigma } \cdot 1 = p^{-\sigma }\).

Lemma 405 Term bound
#

For \(p\in \mathcal{P}\) and \(t\in {\mathbb R}\), we have \(|1 - p^{-(3/2+it)}| \le 1 + p^{-3/2}\).

Proof

Apply Lemma 403 with \(z=p^{-(3/2+it)}\). This gives \(|1 - p^{-(3/2+it)}| \le 1 + |p^{-(3/2+it)}|\). Apply Lemma 404 with \(\sigma =3/2\) to get \(|p^{-(3/2+it)}| = p^{-3/2}\).

Lemma 406 Inv order
#

If \(0 {\lt} a \le b\), then \(a^{-1} \ge b^{-1}\).

Proof

Basic property of inequalities

Lemma 407 Nonzero term
#

For \(p\in \mathcal{P}\), we have \(1 - p^{-(3/2+it)}\neq 0\).

Proof

We have \(p^{-(3/2+it)}\neq 1\) by lemma 385 with \(s=3/2+it\).

Lemma 408 Inverse bound

For \(p\in \mathcal{P}\) and \(t\in {\mathbb R}\), we have \(|1 - p^{-(3/2+it)}|^{-1} \ge (1 + p^{-3/2})^{-1}\).

Proof

Apply lemma 405, and then ?? with \(a = |1 - p^{-(3/2+it)}|\) and \(b=1 + p^{-3/2}\).

Lemma 409 Prod order
#

Let \(P\) be a set, and \(a(p):P\to {\mathbb C}\) and \(b(p):P\to {\mathbb C}\) be multipliable. If \(0 {\lt} a(p) \le b(p)\) for all \(p\in P\) then \(\prod '_{p\in P} a(p) \le \prod '_{p\in P} b(p)\).

Proof

Mathlib: tprod_le_tprod

Lemma 410 Zeta compare

For \(t\in {\mathbb R}\), we have \(\prod '_{p\in \mathcal{P}}(1 + p^{-3/2})^{-1} \le \prod '_{p\in \mathcal{P}}|1 - p^{-(3/2+it)}|^{-1}\).

Proof

Apply ?? with \(P=\mathcal{P}\), \(a(p) = (1 + p^{-3/2})^{-1}\), \(b(p)=|1 - p^{-(3/2+it)}|^{-1}\). Multipliability holds by lemma 386

Theorem 411 Zeta lower
#

For any \(t\in {\mathbb R}\), we have \(|\zeta (3/2+it)| \ge \frac{\zeta (3)}{\zeta (3/2)}\).

Proof

From Lemma 392 with \(s=3/2+it\), the left hand side is \(|\zeta (3/2+it)| = \prod '_{p\in \mathcal{P}}|1 - p^{-(3/2+it)}|^{-1}\). From Lemma 402, the right hand side is \(\frac{\zeta (3)}{\zeta (3/2)} = \prod '_{p\in \mathcal{P}}(1+p^{-3/2})^{-1}\). The theorem then follows directly from the inequality in Lemma 410.

Lemma 412 Zeta positive
#

For \(x\in {\mathbb R}\), if \(x{\gt}1\) then \(\zeta (x)\in {\mathbb R}\) and \(\zeta (x){\gt}0\).

Proof

By zeta_eq_tsum_one_div_nat_add_one_cpow, since \(x{\gt}1\) we have \(\zeta (x)=\sum _{n=1}^\infty n^{-x}\). Then note \(n^{-x}\) is positive real for all \(n\), so the sum is also positive real.

Lemma 413 Ratio positive
#

We have \(\frac{\zeta (3)}{\zeta (3/2)}{\gt}0\).

Proof

By lemma 412 applied twice, to both \(x=3\) and \(x=3/2\).

Lemma 414 Fixed lower
#

There exists \(a{\gt}0\) such that for any \(t\in {\mathbb R}\), we have \(|\zeta (3/2+it)| \ge a\).

Proof

By theorem 411 with \(a=\frac{\zeta (3)}{\zeta (3/2)}\). Note \(a{\gt}0\) by lemma 413.

3.2 Zeta bound

Lemma 415 Series form
#

For \(s\in {\mathbb C}\) with \(\Re (s){\gt}1\), we have \(\zeta (s) = \sum _{n=1}^\infty n^{-s}\).

Proof

Mathlib: zeta_eq_tsum_one_div_nat_add_one_cpow

Definition 416 Partial sum
#

For \(s\in {\mathbb C}\) and \(N\in {\mathbb N}\), define the partial sum \(\zeta _N(s) = \sum _{n=1}^N n^{-s}\).

Lemma 417 Abel sum
#

Let \(a_n \in {\mathbb C}\) and let \(f: {\mathbb R}\to {\mathbb C}\) be a continuously differentiable function. Let \(A(u) = \sum _{n=1}^{\lfloor u \rfloor } a_n\). Then for any integer \(N\ge 1\),

\[ \sum _{n=1}^N a_n f(n) = A(N)f(N) - \int _1^N A(u) f'(u) du. \]
Proof

Mathlib: sum_mul_eq_sub_sub_integral_mul

Lemma 418 Sum identity
#

For \(s\in {\mathbb C}\), let \(f(u) = u^{-s}\) and \(a_n=1\) for all \(n\) \(N\in {\mathbb N}\). Then \(\zeta _N(s) = \sum _{n=1}^N a_n f(n)\).

Proof

Direct substution

Lemma 419 Count sum
#

Let \(a_n=1\). For \(u\ge 1\), let \(A(u) = \sum _{n=1}^{\lfloor u \rfloor } a_n\). Then \(A(u) = \lfloor u \rfloor \).

Proof

By definition, \(\sum _{n=1}^{\lfloor u \rfloor } 1 = \lfloor u \rfloor \).

Lemma 420 Power deriv
#

Let \(f(u) = u^{-s}\). Then \(f'(u) = -s u^{-s-1}\).

Proof

Apply the power rule for differentiation. See Mathlib/Analysis/Calculus.

Lemma 421 Apply Abel

For \(s\in {\mathbb C}\) and integer \(N\ge 1\),

\[ \zeta _N(s) = \lfloor N \rfloor N^{-s} - \int _1^N \lfloor u \rfloor (-s u^{-s-1}) du. \]
Proof

Apply Lemma 417 with \(f(u)=u^{-s}\) and \(a_n=1\). Use lemma 418, and \(A(u)\) from Lemma 419, and \(f'(u)\) from Lemma 420.

Lemma 422 Floor int
#

For an integer \(N\ge 1\), \(\lfloor N \rfloor = N\).

Proof

By definition of the floor function.

Lemma 423 First form
#

For \(s\in {\mathbb C}\) and integer \(N\ge 1\),

\[ \zeta _N(s) = N^{1-s} + s \int _1^N \lfloor u \rfloor u^{-s-1} du. \]
Proof

Apply Lemma 421 and Lemma 422.

Lemma 424 Floor split
#

For any \(u\in {\mathbb R}\), \(\lfloor u \rfloor = u - \{ u\} \), where \(\{ u\} \) is the fractional part of \(u\).

Proof

By definition of the fractional part function.

Lemma 425 Integral split
#

For \(s\in {\mathbb C}\) and integer \(N\ge 1\),

\[ \int _1^N \lfloor u \rfloor u^{-s-1} du = \int _1^N u^{-s} du - \int _1^N \{ u\} u^{-s-1} du. \]
Proof

Apply Lemma 424 and linearity of the integral.

Lemma 426 Second form
#

For \(s\in {\mathbb C}\) and integer \(N\ge 1\),

\[ \zeta _N(s) = N^{1-s} + s \int _1^N u^{-s} du - s \int _1^N \{ u\} u^{-s-1} du. \]
Proof

Apply Lemmas 423 and 425.

Lemma 427 Main integral
#

For \(s\in {\mathbb C}, s\neq 1\), we have \(s \int _1^N u^{-s} du = \frac{s}{1-s}(N^{1-s} - 1)\).

Proof

The antiderivative of \(u^{-s}\) is \(\frac{u^{1-s}}{1-s}\). Evaluate at \(u=N\) and \(u=1\).

Lemma 428 Final form
#

For \(s\in {\mathbb C}, s\neq 1\) and integer \(N\ge 1\),

\[ \zeta _N(s) = \frac{N^{1-s}}{1-s} + 1+\frac{1}{s-1} - s \int _1^N \{ u\} u^{-s-1} du. \]
Proof

Apply Lemmas 426 and 427 and combine terms: \(N^{1-s} + \frac{s}{1-s}N^{1-s} = N^{1-s}(1+\frac{s}{1-s}) = N^{1-s}(\frac{1-s+s}{1-s}) = \frac{N^{1-s}}{1-s}\). The term \(-\frac{s}{1-s}\) is \(\frac{s}{s-1}=1+\frac{1}{s-1}\).

Lemma 429 Limit term
#

If \(\Re (s){\gt}1\), then \(\lim _{N\to \infty } N^{1-s} = 0\).

Proof

\(|N^{1-s}| = N^{1-\Re (s)}\). Since \(1-\Re (s) {\lt} 0\), this limit tends to 0.

Lemma 430 Frac bound
#

For any \(u\in {\mathbb R}\), \(0 \le \{ u\} {\lt} 1\), and thus \(|\{ u\} | \le 1\).

Proof

By definition of the fractional part.

Lemma 431 Term bound
#

For \(u\ge 1\) and \(s\in {\mathbb C}\), \(|\{ u\} u^{-s-1}| \le u^{-\Re (s)-1}\).

Proof

Apply Lemma 430. We have \(|\{ u\} u^{-s-1}| = |\{ u\} | |u^{-s-1}| \le 1 \cdot u^{-\Re (s)-1}\).

Lemma 432 Eps bound
#

Let \(\varepsilon {\gt}0\) and \(u\ge 1\). If \(\Re (s)\ge \varepsilon \) then \(|\{ u\} u^{-s-1}| \le u^{-1-\varepsilon }\).

Proof

Apply Lemma 431 and that \(x\mapsto u^{-1-x}\) is monotonic.

Lemma 433 Triangle int
#

For \(z_1, z_2 \in {\mathbb C}\), \(|z_1+z_2| \le |z_1|+|z_2|\). For an integral, \(|\int g(u)du| \le \int |g(u)|du\).

Proof

Standard results from complex analysis.

Lemma 434 Integral conv
#

Let \(\varepsilon {\gt}0\) If \(\Re (s)\ge \varepsilon \), the integral \(\int _1^\infty \{ u\} u^{-s-1} du\) converges uniformly.

Proof

By Lemmas 433 and 432, we calculate

\[ \Big|\int _1^\infty \{ u\} u^{-s-1} du \Big| \le \int _1^\infty |\{ u\} u^{-s-1}| \le \int _1^\infty u^{-1-\varepsilon } du = \frac{1}{\varepsilon }. \]

Thus the integral converges.

Lemma 435 Zeta formula
#

For \(\Re (s){\gt}1\),

\[ \zeta (s) = 1+\frac{1}{s-1} - s \int _1^\infty \{ u\} u^{-s-1} du. \]
Proof

Take the limit \(N\to \infty \) in Lemma 428. Apply Lemmas 415, 429, and 434.

Lemma 436 Analytic off
#

Let \(S=\{ s\in {\mathbb C}: s\neq 1\} \). Then \(\zeta (s)\) is analyticOnNhd \(S\).

Proof

Apply lemma 464

Lemma 437 S open
#

Let \(S=\{ s\in {\mathbb C}: s\neq 1\} \). Then \(S\) is open.

Proof

\(S\) is the complement of the singleton \(\{ 1\} \), which is open.

Lemma 438 T open
#

Let \(S=\{ s\in {\mathbb C}: s\neq 1\} \) and \(T=\{ s\in S : \Re (s){\gt}1/10\} \). Then \(T\) is open.

Proof

\(T\) is the intersection of the open set \(S\) with the open half-plane \(\{ s : \Re (s) {\gt} 1/10\} \).

Lemma 439 T connected
#

Let \(S=\{ s\in {\mathbb C}: s\neq 1\} \) and \(T=\{ s\in S : \Re (s){\gt}1/10\} \). Then \(T\) is preconnected.

Proof

The set \(T\) can be shown to be path-connected, which implies preconnected.

Lemma 440 Integral analytic
#

If the integral of an analytic function \(f:{\mathbb C}\to {\mathbb C}\) converges uniformly for all \(s\) such that \(\Re (s) \ge \frac{1}{10}\), then the integral is analytic (as a function of s).

Proof
Lemma 441 Analytic ext
#

Let \(S=\{ s\in {\mathbb C}: s\neq 1\} \) and \(T=\{ s\in S : \Re (s){\gt}1/10\} \). The function \(F(z) = \frac{z}{z-1} - z \int _1^\infty \{ u\} u^{-z-1} du\) is analyticOnNhd \(T\).

Proof

Take \(s\in T\). The function \(\frac{z}{z-1}\) is analyticAt \(z=s\), since \(s\neq 1\). The integral converges uniformly by lemma 434, so \(F(z)\) is analyticAt \(z=s\).

Lemma 442 Divide split
#

For any complex number \(z \neq 1\), we have \(\frac{z}{z-1} = 1 + \frac{1}{z-1}\).

Proof

Direct algebraic manipulation: \(\frac{z}{z-1} = \frac{(z-1)+1}{z-1} = \frac{z-1}{z-1} + \frac{1}{z-1} = 1 + \frac{1}{z-1}\).

Lemma 443 Zeta extend
#

Let \(S=\{ s\in {\mathbb C}: s\neq 1\} \) and \(T=\{ s\in S : \Re (s){\gt}1/10\} \). We have \(\zeta (s) = 1+\frac{1}{s-1} - s \int _1^\infty \{ u\} u^{-s-1} du\) on \(T\).

Proof

By Lemma 435, the equality \(\zeta (s)=F(s)\) holds for \(\Re (s){\gt}1\). By Lemma 441, \(F(s)\) is analyticOnNhd \(T\). By Lemma 436 \(\zeta (s)\) is analyticOnNhd \(S\supset T\). Hence by the identity principle, (Mathlib try AnalyticOnNhd.eqOn_of_preconnected_of_eventuallyEq) the equality \(\zeta (s)=F(s)\) holds in \(T\).

Lemma 444 First bound
#

For \(\Re (s){\gt}0, s\neq 1\),

\[ |\zeta (s)| \le 1+\left|\frac{1}{s-1}\right| + |s| \int _1^\infty |\{ u\} u^{-s-1}| du. \]
Proof

Apply Lemma 433 to the formula in Lemma 443.

Lemma 445 Integral value
#

For \(\Re (s){\gt}0\), \(\int _1^\infty u^{-\Re (s)-1} du = \frac{1}{\Re (s)}\).

Proof

The antiderivative is \(\frac{u^{-\Re (s)}}{-\Re (s)}\). Evaluating from \(1\) to \(\infty \) gives \(0 - \frac{1}{-\Re (s)} = \frac{1}{\Re (s)}\).

Lemma 446 Second bound
#

For \(\Re (s){\gt}0, s\neq 1\),

\[ |\zeta (s)| \le 1+\left|\frac{1}{s-1}\right| + \frac{|s|}{\Re (s)}. \]
Proof

Apply Lemmas 444, 431, and 445.

Lemma 447 Inverse mod
#

For \(s\in {\mathbb C}, s\neq 1\), we have \(\left|\frac{1}{s-1}\right| =\frac{1}{|s-1|}\).

Proof

Algebraic identity and Lemma 433.

Lemma 448 Third bound
#

For \(\Re (s){\gt}0, s\neq 1\),

\[ |\zeta (s)| \le 1 + \frac{1}{|s-1|} + \frac{|s|}{\Re (s)}. \]
Proof

Apply Lemmas 446 and 447.

Lemma 449 s bound
#

Let \(s=\sigma +it\). If \(\tfrac {1}{2} \le \sigma {\lt} 3\), then \(|s| {\lt} 3+|t|\).

Proof

\(|s|^2 = \sigma ^2+t^2 \le 3^2+t^2 = 9+|t|^2\). Since \(0 \le 6|t|\), we have \(9+|t|^2 \le 9+6|t|+|t|^2 = (3+|t|)^2\). Taking the square root gives \(|s| \le 3+|t|\).

Lemma 450 Real inv
#

If \(\tfrac {1}{2} \le \Re (s) {\lt} 3\), then \(\dfrac {1}{\Re (s)} \le 2\).

Proof

From \(1/2 \le \Re (s)\), taking reciprocals reverses the inequality.

Lemma 451 Shift bound
#

Let \(s=\sigma +it\). If \(\tfrac {1}{2} \le \sigma {\lt} 3\) and \(|t|\ge 1\), then \(|s-1| \ge 1\).

Proof

\(|s-1|^2 = (\sigma -1)^2 + t^2\). Since \(|t|\ge 1\), \(t^2\ge 1\). Since \((\sigma -1)^2 \ge 0\), we have \(|s-1|^2 \ge 1\).

Lemma 452 Combine bounds
#

If \(s=\sigma +it\) with \(\tfrac {1}{2} \le \sigma {\lt} 3\) and \(|t|\ge 1\), then

\[ |\zeta (s)| {\lt} 1 + 1 + (3+|t|) \cdot 2. \]
Proof

In Lemma 448, apply Lemma 451 to bound \(\frac{1}{|s-1|} \le 1\). Apply Lemma 449 to bound \(|s|\) and Lemma 450 to bound \(\frac{1}{\Re (s)}\).

Lemma 453 Algebra step
#

For \(|t|\ge 1\), we have \(1 + 1 + (3+|t|) \cdot 2 = 8 + 2|t|\).

Proof

By arithmetic. \(2 + 6 + 2|t| = 8+2|t|\).

Lemma 454 Upper bound
#

For all \(z\in {\mathbb C}\) with \(\tfrac {1}{2} \le \Re (z) {\lt} 3\) and \(|\Im (z)|\ge 1\), we have \(|\zeta (z)| {\lt} 8+2|\Im (z)|\).

Proof

Apply Lemmas 452 and 453.

Lemma 455 Shift calc
#

For \(s\in {\mathbb C}\), \(t\in {\mathbb R}\) let \(z=s+3/2+it\). Then \(\Re (z) = \Re (s)+3/2\) and \(\Im (z)=\Im (s)+t\).

Proof

Direct calculation

Lemma 456 Shift cond
#

For \(s\in {\mathbb C}\), \(t\in {\mathbb R}\) let \(z=s+3/2+it\). If \(|s|\le 1\) and \(|t|\ge 3\), then \(\Re (z) \in [1/2, 3]\) and \(|\Im (z)|\ge 1\)

Proof

Apply lemma 455, and use arithmetic. Here \(\Im (s)^2 + \Re (s)^2 = |s|^2 \in [0,1]\) by assumption.

Lemma 457 Global bound
#

There exists \(b{\gt}1\) such that for all \(t\in {\mathbb R}\) we have \(|\zeta (s+3/2+it)| \le 8+2|t|\) for all \(|s|\le 1\) and \(|t|\ge 3\).

Proof

Apply ??.

3.3 Zeta derivatives

Lemma 458 Diff off pole
#

Let \(S=\{ s\in {\mathbb C}: s\neq 1\} \). For all \(s\in S\) we have \(\zeta (s)\) DifferentiableAt \(s\).

Proof
Lemma 459 At to within
#

Let \(T\subset {\mathbb C}\). For \(g:T\to {\mathbb C}\) and \(s\in T\), if \(g\) DifferentiableAt \(s\) then \(g\) DifferentiableWithinAt \(s\)

Proof

Mathlib: DifferentiableAt.differentiableWithinAt

Lemma 460 Within to on
#

Let \(T\subset {\mathbb C}\). For \(g:T\to {\mathbb C}\), if \(g\) DifferentiableWithinAt \(s\) for all \(s\in T\), then \(g\) DifferentiableOn \(T\)

Proof

Unfold definition of DifferentiableOn \(T\) in terms of differentiableWithinAt \(s\) for all \(s\in T\).

Lemma 461 At to on
#

Let \(T\subset {\mathbb C}\). For \(g:T\to {\mathbb C}\), if \(g\) DifferentiableAt \(s\) for all \(s\in T\), then \(g\) DifferentiableOn \(T\)

Proof

By ??

Lemma 462 Diff to anal
#

Let open \(T\subset {\mathbb C}\). For \(g:T\to {\mathbb C}\), if \(g\) DifferentiableOn \(T\), then \(g\) analyticOnNhd \(T\)

Proof

Mathlib: Complex.analyticOnNhd_iff_differentiableOn

Lemma 463 At gives anal
#

Let open \(T\subset {\mathbb C}\). For \(g:T\to {\mathbb C}\), if \(g\) DifferentiableAt \(s\) for all \(s\in T\), then \(g\) analyticOnNhd \(T\).

Proof

By ??

Lemma 464 Analytic off
#

Let \(S=\{ s\in {\mathbb C}: s\neq 1\} \). Then \(\zeta (s)\) is analyticOnNhd \(S\).

Proof

Apply ?? with \(T=S\) and \(g(s)=\zeta (s)\).

Lemma 465 Disk avoid
#

Let \(t\in {\mathbb R}\) with \(|t|{\gt}1\). Let \(c=3/2+it\) and \(S_t=\{ s\in {\mathbb C}: s+c\neq 1\} \). Then \(s\neq 1\) for all \(s\in {\mathbb C}\) with \(|s-c|\le 1\).

Proof

For sake of contradiction, suppose \(s=1\). Then we calculate

\[ |s-c|=|1-c| = |1-3/2-it|=|1/2-it|\ge |\Im (it)| = |t|. \]

Thus \(|s-c| \ge |t|{\gt}1\), but this contradicts \(|s-c|\le 1\). Hence the proof is complete.

Lemma 466 Disk subset
#

Let \(t\in {\mathbb R}\) with \(|t|{\gt}1\). Let \(c=3/2+it\). Then \(\overline{{\mathbb D}}_1(c) \subset S\)

Proof

By lemma 465, and unfolding the definitions of \(c\), \(\overline{{\mathbb D}}_1(c)\), and \(S\).

Lemma 467 Disk analytic
#

Let \(t\in {\mathbb R}\) with \(|t|{\gt}1\), \(x \in {\mathbb R}\), and let \(c=x+it\). Then \(\zeta (s)\) is analyticOnNhd \(\overline{{\mathbb D}}_1(c)\).

Proof

Apply ??, and then Mathlib: AnalyticOnNhd.mono

Lemma 468 Zero free
#

Let \(s\in {\mathbb C}\). If \(\Re (s) {\gt} 1\) then \(\zeta (s) \neq 0 \).

Proof
Lemma 469 Point nonzero
#

For all \(t\in {\mathbb R}\) we have \(\zeta (3/2+it)\neq 0\)

Proof
Lemma 470 Normalize analytic
#

Let \(c\in {\mathbb C}\) and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Then the function \(f_c(z) = f(z+c)/f(c)\) is AnalyticOnNhd \(\overline{{\mathbb D}}_1\) and satisfies \(f_c(0)=1\).

Proof

Since \(f\) is AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\), and \(\overline{{\mathbb D}}_1(c)=\{ z+c:z\in \overline{{\mathbb D}}_1\} \), then \(f_c\) is AnalyticOnNhd \(\overline{{\mathbb D}}_1\).

Next we calculate \(f_c(0) = \frac{f(0+c)}{f(c)} = \frac{f(c)}{f(c)} = 1.\)

Lemma 471 Log derivative
#

Let \(c\in {\mathbb C}\) and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). Then for any \(z\) where \(f(z+c) \neq 0\), we have \(\text{logDeriv}(f_c)(z) = \text{logDeriv}(f)(z+c)\).

Proof

By the chain rule, we calculate \(f_c'(z) = f'(z+c)\). Thus since \(f(c),f(z+c) \neq 0\), we calculate

\[ \text{logDeriv}(f_c)(z) = \frac{f_c'(z)}{f_c(z)} = \frac{f'(z+c)/f(c)}{f(z+c)/f(c)} = \frac{f'(z+c)}{f(z+c)}= \text{logDeriv}(f)(z+c) \]
Lemma 472 Shift bound
#

Let \(B{\gt}1\), \(0{\lt}R{\lt}1\), \(c\in {\mathbb C}\), and \(f:{\mathbb C}\to {\mathbb C}\) with \(f(c)\neq 0\). If \(|f(z)|\le B\) for all \(z\in \overline{{\mathbb D}}_R(c)\), then the function \(f_c(z) = f(z+c)/f(c)\) satisfies \(|f_c(z)| \le B/|f(c)|\) for all \(z\overline{{\mathbb D}}_R\).

Proof

If \(z\overline{{\mathbb D}}_R\) then \(z+c\in \overline{{\mathbb D}}_R\), so \(|f(z+c)|\le B\) by assumption. Thus we calculate \(|f_c(z)| = |f(z+c)|/f(c) \le B/|f(c)|\).

Lemma 473 Zero shift
#

Let \(r{\gt}0\), \(c\in {\mathbb C}\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). We have \(\rho '\in \mathcal{K}_{f_c}(r)\) if and only if \(\rho '=\rho -c\) where \(\rho \in \mathcal{K}_f(r;c)\). In particular \(\mathcal{K}_{f_c}(r) = \{ \rho -c : \rho \in \mathcal{K}_f(r) \} \).

Proof

By definition, \(\rho ' \in \mathcal{K}_{f_c}(r)\) means \(f_c(\rho ')=0\) and \(|\rho '|\le r\). By definition of \(f_c\) we have \(f_c(\rho ')=f(\rho '+c)/f(c)\). Since \(f(c)\neq 0\) we conclude \(f(\rho '+c)=0\). Also \(|(\rho '+c)-c|=|\rho '|\le r\), and hence \(\rho '+c \in \mathcal{K}_{f}(r;c)\). Therefore \(\rho ' \in \mathcal{K}_{f_c}(r)\) implies \(\rho '+c \in \mathcal{K}_{f}(r;c)\)

The proof that \(\rho \in \mathcal{K}_{f}(r;c)\) implies \(\rho -c \in \mathcal{K}_{f_c}(r)\) is similar.

Lemma 474 Order shift
#

Let \(r{\gt}0\), \(c\in {\mathbb C}\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). For \(\rho \in \mathcal{K}_{f_c}(r)\), the analyticOrderAt satisfies \(m_{\rho ,f_c} = m_{\rho +c,f}\).

Proof

By definition of analyticOrderAt, we have \(f_c(z) = (z-\rho )^{m_{\rho ,f_c}} h(z)\) for some \(h\) AnalyticAt \(\rho \) with \(h(\rho )\neq 0\). As \(f_c(z) = f(z+c)/f(c)\) and \(f(c)\neq 0\), this implies \(f(z+c) = (z-\rho ')^{m_{\rho ',f_c}} h(z)f(c)\). Thus letting \(w=z+c\) and \(g(w) = h(w-c)f(c)\), we have \(f(w) = (w-c-\rho )^{m_{\rho ,f_c}} g(w)\). Observe \(h\) AnalyticAt \(\rho '\) implies that \(g\) is AnalyticAt \(\rho '+c\). And \(h(\rho '),f(c)\neq 0\) imply \(g(\rho +c)\neq 0\). Hence by definition we conclude AnalyticAt of \(f\) at \(\rho +c\) equals \(m_{\rho ',f_c}\).

Lemma 475 Disk minus K
#

Let \(r_1{\gt}0\), \(c\in {\mathbb C}\), and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). We have \(z\in \overline{{\mathbb D}}_{r_1} \setminus \mathcal K_{f_c}(R_1)\) if and only if \(z+c\in \overline{{\mathbb D}}_{r_1}(c) \setminus \mathcal K_{f}(R_1;c)\)

Proof

First \(z\in \overline{{\mathbb D}}_{r_1}\) if and only if \(|z| \le r_1\) if and only if \(|(z+c)-c|\le r_1\) iff \(z+c\in \overline{{\mathbb D}}_{r_1}(c)\). Second, since \(f(c)\neq 0\) we have \(z\in \mathcal K_{f_c}(R_1)\) if and only if \(f_c(z)=0\) if and only if \(f(z+c)=0\) if and only if \(z+c\in \mathcal K_{f}(R_1;c)\). Combining these two equivalences, \(z\in \overline{{\mathbb D}}_{r_1} \setminus \mathcal K_{f_c}(R_1)\) if and only if \(z+c\in \overline{{\mathbb D}}_{r_1}(c) \setminus \mathcal K_{f}(R_1;c)\).

Lemma 476 Final bound
#

Let \(B{\gt}1\), \(0{\lt}r_1{\lt}r{\lt}R_1{\lt}R{\lt}1\). Let \(c\in {\mathbb C}\) and \(f:{\mathbb C}\to {\mathbb C}\) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(f(c)\neq 0\). Let \(f_c(z) = f(z+c)/f(c)\). If \(|f(z)| {\lt} B\) for all \(z\in \overline{{\mathbb D}}_R(c)\), then for all \(z\in \overline{{\mathbb D}}_{r_1} \setminus \mathcal K_{f_c}(R_1)\) we have

\[ \left|\frac{f_c'}{f_c}(z) - \sum _{\rho '\in \mathcal K_{f_c}(R_1)}\frac{m_{\rho ',f_c}}{z-\rho '}\right| \le \left(\frac{16 r^2}{(r-r_1)^3} + \frac{1}{(R^2/R_1 - R_1)\log (R/R_1)}\right)\log (B/|f(c)|). \]
Proof

Apply lemma 383 with the function \(f_c\), using the conditions ??.

Lemma 477 Log expansion
#

Let \(t\in {\mathbb R}\) with \(|t|{\gt}3\). Let \(c=3/2+it\), \(B{\gt}1\), \(0{\lt}r_1{\lt}r{\lt}R_1{\lt}R{\lt}1\). If \(|\zeta (z)| {\lt} B\) for all \(z\in \overline{{\mathbb D}}_R(c)\), then for all \(z\in \overline{{\mathbb D}}_{r_1}(c)\setminus \mathcal K_\zeta (R_1;c)\) we have

\begin{align*} \left|\frac{\zeta '(z)}{\zeta (z)} - \sum _{\rho \in \mathcal K_{\zeta }(R_1;c)} \frac{m_{\rho ,\zeta }}{z-\rho } \right| \le \left(\frac{16 r^2}{(r-r_1)^3} + \frac{1}{(R^2/R_1 - R_1)\log (R/R_1)}\right) \log (B/|\zeta (c)|) \end{align*}
Proof

We apply lemma 476 using \(f(z) = \zeta (z)\). The conditions \(\zeta \) AnalyticOnNhd \(\overline{{\mathbb D}}_1(c)\) with \(\zeta (c)\neq 0\) hold by ??.

Lemma 478 Lower shift
#

There exists \(a{\gt}0\) such that for all \(t\in {\mathbb R}\) we have \(|\zeta (3/2+it)| \ge a\)

Proof

Euler product for zeta, triangle inequality, properties of \(\zeta (\sigma )\) for \(\sigma {\gt}1\) Let \(s = \sigma + it\). We are interested in the case where \(\sigma = 3/2\).

Step 1: Use the Euler Product Formula

For any complex number \(s\) with \(\Re (s) = \sigma {\gt} 1\), the Riemann zeta function can be represented by the absolutely convergent Euler product over all prime numbers \(p\):

\[ \zeta (s) = \prod _{p} \frac{1}{1-p^{-s}} \]

This implies that its reciprocal is

\[ \frac{1}{\zeta (s)} = \prod _{p} (1-p^{-s}) \]

We take the modulus of both sides:

\[ \left|\frac{1}{\zeta (s)}\right| = \left|\prod _{p} (1-p^{-s})\right| = \prod _{p} |1-p^{-s}| \]

Step 2: Bound the term \(|1-p^{-s}|\)

Using the triangle inequality (\(|z_1+z_2| \le |z_1|+|z_2|\)), we can bound each term in the product:

\[ |1 - p^{-s}| \le |1| + |-p^{-s}| = 1 + |p^{-s}| \]

The modulus of \(p^{-s}\) is:

\[ |p^{-s}| = |p^{-(\sigma +it)}| = |p^{-\sigma } p^{-it}| = |p^{-\sigma }| |e^{-it\log p}| = p^{-\sigma } \cdot 1 = p^{-\sigma } \]

So, we have \(|1-p^{-s}| \le 1+p^{-\sigma }\).

Step 3: Bound the entire product

Substituting this back into the product for the reciprocal’s modulus:

\[ \left|\frac{1}{\zeta (s)}\right| \le \prod _{p} (1+p^{-\sigma }) \]

The product \(\prod _{p} (1+p^{-\sigma })\) can be expanded:

\[ (1+2^{-\sigma })(1+3^{-\sigma })(1+5^{-\sigma })\dots = 1 + 2^{-\sigma } + 3^{-\sigma } + 5^{-\sigma } + 6^{-\sigma } + \dots \]

This expanded sum contains terms \(n^{-\sigma }\) for all square-free integers \(n\). This sum is strictly less than the sum over all integers \(n \ge 1\):

\[ \prod _{p} (1+p^{-\sigma }) {\lt} \sum _{n=1}^\infty \frac{1}{n^\sigma } \]

The sum on the right is, by definition, the Riemann zeta function evaluated at the real number \(\sigma \), i.e., \(\zeta (\sigma )\). Thus, we have established that for \(\sigma {\gt} 1\):

\[ \left|\frac{1}{\zeta (\sigma +it)}\right| {\lt} \zeta (\sigma ) \]

Step 4: Conclude the proof

Taking the reciprocal of the inequality (and flipping the inequality sign) gives:

\[ |\zeta (\sigma +it)| {\gt} \frac{1}{\zeta (\sigma )} \]

We are interested in the specific case \(\sigma = 3/2\). For this value, we have:

\[ |\zeta (3/2+it)| {\gt} \frac{1}{\zeta (3/2)} \]

The value \(\zeta (3/2) = \sum _{n=1}^\infty n^{-3/2}\) is a convergent sum of positive terms, so it is a finite positive constant (approximately 2.612). We can therefore define our constant \(a\) to be \(a = 1/\zeta (3/2)\). Since \(\zeta (3/2){\gt}0\), we have \(a{\gt}0\). The inequality \(|\zeta (3/2+it)| \ge a\) holds for all \(t \in {\mathbb R}\).

Lemma 479 Log lower
#

There exists \(A{\gt}1\) such that for all \(t\in {\mathbb R}\),

\[ \log \left(\frac{1}{|\zeta (3/2+it)|}\right) \leq A \]
Proof

Let \(a{\gt}0\) be as in lemma 478, so \(|\zeta (3/2+it)| \ge a\) for all \(t\in {\mathbb R}\). Set \(A = \max \{ 2, \log (1/a)\} \). Clearly \(A {\gt} 1\) since \(a {\gt} 0\) and \(\log (1/a) {\gt} 0\). For any \(t\in {\mathbb R}\), set \(x = |\zeta (3/2+it)|\). Then \(a \leq x\), so \(1/x \leq 1/a\) and \(\log (1/x) \leq \log (1/a) \leq A\). Also, \(\log (1/x) {\lt} 2 \leq A\) for \(x {\gt} 1/2\). Thus \(\log (1/x) \leq A\) for all \(t\).

Lemma 480 Upper pre
#

There exists \(b{\gt}1\) such that for all \(t\in {\mathbb R}\) we have \(|\zeta (s+3/2+it)| \le b|t|\) for all \(|s|\le 1\) and \(|t|\ge 3\).

Proof

Apply lemma 457

Lemma 481 Upper disk
#

There exists \(b{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), letting \(c=3/2+it\), we have \(|\zeta (s)| \le b|t|\) for all \(s\in \overline{{\mathbb D}}_1(c)\).

Proof

The proof of this lemma is a direct application of lemma 480 by a change of variables.

Step 1: Recall the prerequisite lemma

Lemma 480 states that there exists a constant \(b{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|\ge 3\) and for all complex numbers \(s_{pre}\in {\mathbb C}\) with \(|s_{pre}|\le 1\), the following inequality holds:

\[ |\zeta (s_{pre}+3/2+it)| \le b|t| \]

We will show that the conditions and conclusion of the current lemma perfectly align with this statement.

Step 2: Unpack the conditions of the current lemma

We are given the following conditions:

  1. A real number \(t\) with \(|t| {\gt} 3\).

  2. A complex number \(c = 3/2 + it\).

  3. A complex number \(s\) which belongs to the closed disk of radius 1 centered at \(c\), denoted \(\overline{{\mathbb D}}_1(c)\).

The condition \(s \in \overline{{\mathbb D}}_1(c)\) means, by definition, that the distance between \(s\) and \(c\) is at most 1:

\[ |s - c| \le 1 \]

Step 3: Define a new variable to match the prerequisite

Our goal is to bound \(|\zeta (s)|\). Let’s define a new variable, which we will call \(s_{pre}\), in a way that relates our \(s\) to the argument of the zeta function in lemma 480. Let’s set the argument of \(\zeta \) in our lemma, which is \(s\), equal to the argument of \(\zeta \) in the prerequisite lemma, which is \(s_{pre}+3/2+it\):

\[ s = s_{pre} + 3/2 + it \]

Now, let’s solve for \(s_{pre}\):

\[ s_{pre} = s - (3/2 + it) \]

Recognizing the definition \(c=3/2+it\), this simplifies to:

\[ s_{pre} = s - c \]

Step 4: Verify the conditions on the new variable

Lemma 480 requires that the variable \(s_{pre}\) satisfies \(|s_{pre}| \le 1\). Let’s check if our definition of \(s_{pre}\) meets this condition. From Step 2, we know that for any \(s \in \overline{{\mathbb D}}_1(c)\), we have \(|s - c| \le 1\). Substituting our definition from Step 3, this is exactly the condition:

\[ |s_{pre}| \le 1 \]

Therefore, for any \(s\) that satisfies the conditions of our lemma, we can define \(s_{pre} = s-c\), and this \(s_{pre}\) will satisfy the conditions of lemma 480.

Step 5: Apply the prerequisite lemma and conclude

We have established the following:

  • We are given \(t\) with \(|t|{\gt}3\). This matches the condition on \(t\) in lemma 480.

  • For any \(s \in \overline{{\mathbb D}}_1(c)\), we can write \(s = s_{pre} + c = s_{pre} + 3/2 + it\), where \(s_{pre} = s-c\) satisfies \(|s_{pre}| \le 1\).

We can now apply the inequality from lemma 480 to the number \(\zeta (s_{pre} + 3/2 + it)\). The lemma guarantees the existence of a constant \(b{\gt}1\) such that:

\[ |\zeta (s_{pre} + 3/2 + it)| \le b|t| \]

Since \(s = s_{pre} + 3/2 + it\), this inequality is identical to:

\[ |\zeta (s)| \le b|t| \]

This holds for any \(s \in \overline{{\mathbb D}}_1(c)\) and any \(t \in {\mathbb R}\) with \(|t|{\gt}3\). This is precisely the statement we needed to prove.

Lemma 482 Expand bound
#

There exists a constant \(A{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), \(c=3/2+it\), \(B{\gt}1\), \(0{\lt}r_1{\lt}r{\lt}R_1{\lt}R{\lt}1\), \(z\in \overline{{\mathbb D}}_{r_1}(c)\setminus \mathcal K_\zeta (R_1;c)\) we have

\begin{align*} \left|\frac{\zeta '(z)}{\zeta (z)} - \sum _{\rho \in \mathcal K_{\zeta }(R_1;c)} \frac{m_{\rho ,\zeta }}{z-\rho } \right| \le \left(\frac{16 r^2}{(r-r_1)^3} + \frac{1}{(R^2/R_1 - R_1)\log (R/R_1)}\right)\Big(\log |t| + \log (b) + A\Big) \end{align*}
Proof

We apply ?? with \(B=bt\), and \(C_1=C/R\).

Lemma 483 Final expansion
#

Let \(0{\lt} r_1 {\lt} r {\lt} 5/6\). There exists constants \(C{\gt}1\) such that for all \(t\in {\mathbb R}\) with \(|t|{\gt}3\), \(c=3/2+it\), and \(z\in \overline{{\mathbb D}}_{r_1}(c)\setminus \mathcal K_\zeta (5/6;c)\) we have

\begin{align*} \left|\frac{\zeta '(z)}{\zeta (z)} - \sum _{\rho \in \mathcal K_{\zeta }(5/6;c)} \frac{m_{\rho ,\zeta }}{z-\rho } \right| \le C\left(\frac{1}{(r-r_1)^3} + 1\right)\log |t| \end{align*}
Proof

We apply lemma 482 and choose \(R_1 = 5/6\), \(R=8/9\). Set \(C=\left(16 + \frac{1}{(R^2/R_1 - R_1)\log (R/R_1)}\right)(1 + \log (b) + A)\).