theorem
ArithmeticFunction.IsMultiplicative.mult_lcm_eq_of_ne_zero
{R : Type u_1}
[CommGroupWithZero R]
(f : ArithmeticFunction R)
(h_mult : f.IsMultiplicative)
(x y : ℕ)
(hf : f (x.gcd y) ≠ 0)
:
theorem
ArithmeticFunction.IsMultiplicative.prod_factors_of_mult
(f : ArithmeticFunction ℝ)
(h_mult : f.IsMultiplicative)
{l : ℕ}
(hl : Squarefree l)
:
theorem
Aux.sum_intro
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
[DecidableEq α]
(s : Finset α)
{f : α → M}
(d : α)
(hd : d ∈ s)
:
theorem
Aux.multiplicative_zero_of_zero_dvd
(f : ArithmeticFunction ℝ)
(h_mult : f.IsMultiplicative)
{m n : ℕ}
(h_sq : Squarefree n)
(hmn : m ∣ n)
(h_zero : f m = 0)
:
theorem
Aux.div_mult_of_dvd_squarefree
(f : ArithmeticFunction ℝ)
(h_mult : f.IsMultiplicative)
(l d : ℕ)
(hdl : d ∣ l)
(hl : Squarefree l)
(hd : f d ≠ 0)
:
theorem
Aux.inv_sub_antitoneOn_gt
{R : Type u_1}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
(c : R)
:
AntitoneOn (fun (x : R) => (x - c)⁻¹) (Set.Ioi c)
theorem
Aux.inv_sub_antitoneOn_Icc
{R : Type u_1}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
(a b c : R)
(ha : c < a)
:
AntitoneOn (fun (x : R) => (x - c)⁻¹) (Set.Icc a b)
theorem
Aux.inv_antitoneOn_pos
{R : Type u_1}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
:
AntitoneOn (fun (x : R) => x⁻¹) (Set.Ioi 0)
theorem
Aux.inv_antitoneOn_Icc
{R : Type u_1}
[Field R]
[LinearOrder R]
[IsStrictOrderedRing R]
(a b : R)
(ha : 0 < a)
:
AntitoneOn (fun (x : R) => x⁻¹) (Set.Icc a b)
theorem
Aux.Nat.le_prod
{ι : Type u_1}
[DecidableEq ι]
{f : ι → ℕ}
{s : Finset ι}
{i : ι}
(hi : i ∈ s)
(hf : ∀ i ∈ s, f i ≠ 0)
: