Documentation

PrimeNumberTheoremAnd.Mathlib.NumberTheory.Sieve.AuxResults

theorem ArithmeticFunction.IsMultiplicative.mult_lcm_eq_of_ne_zero {R : Type u_1} [CommGroupWithZero R] (f : ArithmeticFunction R) (h_mult : f.IsMultiplicative) (x y : ) (hf : f (x.gcd y) 0) :
f (x.lcm y) = f x * f y / f (x.gcd y)
theorem Aux.sum_over_dvd_ite {α : Type u_1} [Ring α] {P : } (hP : P 0) {n : } (hn : n P) {f : α} :
dn.divisors, f d = dP.divisors, if d n then f d else 0
theorem Aux.sum_intro {α : Type u_1} {M : Type u_2} [AddCommMonoid M] [DecidableEq α] (s : Finset α) {f : αM} (d : α) (hd : d s) :
f d = ks, if k = d then f k else 0
theorem Aux.ite_sum_zero {p : Prop} [Decidable p] (s : Finset ) (f : ) :
(if p then xs, f x else 0) = xs, if p then f x else 0
theorem Aux.conv_lambda_sq_larger_sum (f : ) (n : ) :
(∑ dn.divisors, d1d.divisors, d2d.divisors, if d = d1.lcm d2 then f d1 d2 d else 0) = dn.divisors, d1n.divisors, d2n.divisors, if d = d1.lcm d2 then f d1 d2 d else 0
theorem Aux.moebius_inv_dvd_lower_bound_real {P : } (hP : Squarefree P) (l m : ) (hm : m P) :
theorem Aux.gcd_dvd_mul (m n : ) :
m.gcd n m * n
theorem Aux.multiplicative_zero_of_zero_dvd (f : ArithmeticFunction ) (h_mult : f.IsMultiplicative) {m n : } (h_sq : Squarefree n) (hmn : m n) (h_zero : f m = 0) :
f n = 0
theorem Aux.div_mult_of_dvd_squarefree (f : ArithmeticFunction ) (h_mult : f.IsMultiplicative) (l d : ) (hdl : d l) (hl : Squarefree l) (hd : f d 0) :
f l / f d = f (l / d)
theorem Aux.inv_sub_antitoneOn_gt {R : Type u_1} [Field R] [LinearOrder R] [IsStrictOrderedRing R] (c : R) :
AntitoneOn (fun (x : R) => (x - c)⁻¹) (Set.Ioi c)
theorem Aux.inv_sub_antitoneOn_Icc {R : Type u_1} [Field R] [LinearOrder R] [IsStrictOrderedRing R] (a b c : R) (ha : c < a) :
AntitoneOn (fun (x : R) => (x - c)⁻¹) (Set.Icc a b)
theorem Aux.inv_antitoneOn_pos {R : Type u_1} [Field R] [LinearOrder R] [IsStrictOrderedRing R] :
AntitoneOn (fun (x : R) => x⁻¹) (Set.Ioi 0)
theorem Aux.inv_antitoneOn_Icc {R : Type u_1} [Field R] [LinearOrder R] [IsStrictOrderedRing R] (a b : R) (ha : 0 < a) :
AntitoneOn (fun (x : R) => x⁻¹) (Set.Icc a b)
theorem Aux.log_add_one_le_sum_inv (n : ) :
Real.log ↑(n + 1) dFinset.Icc 1 n, (↑d)⁻¹
theorem Aux.log_le_sum_inv (y : ) (hy : 1 y) :
Real.log y dFinset.Icc 1 y⌋₊, (↑d)⁻¹
theorem Aux.sum_inv_le_log (n : ) (hn : 1 n) :
dFinset.Icc 1 n, (↑d)⁻¹ 1 + Real.log n
theorem Aux.sum_inv_le_log_real (y : ) (hy : 1 y) :
dFinset.Icc 1 y⌋₊, (↑d)⁻¹ 1 + Real.log y
theorem Aux.Nat.le_prod {ι : Type u_1} [DecidableEq ι] {f : ι} {s : Finset ι} {i : ι} (hi : i s) (hf : is, f i 0) :
f i js, f j
theorem Aux.sum_pow_cardDistinctFactors_div_self_le_log_pow {P k : } (x : ) (hx : 1 x) (hP : Squarefree P) :
(∑ dP.divisors, if d x then k ^ ArithmeticFunction.cardDistinctFactors d / d else 0) (1 + Real.log x) ^ k
theorem Aux.sum_pow_cardDistinctFactors_le_self_mul_log_pow {P h : } (x : ) (hx : 1 x) (hP : Squarefree P) :
(∑ dP.divisors, if d x then h ^ ArithmeticFunction.cardDistinctFactors d else 0) x * (1 + Real.log x) ^ h