Documentation

PrimeNumberTheoremAnd.Auxiliary

Auxiliary lemmas #

theorem DifferentiableAt.comp_ofReal {e : } {z : } (hf : DifferentiableAt e z) :
DifferentiableAt (fun (x : ) => e x) z
theorem deriv.comp_ofReal {e : } {z : } (hf : DifferentiableAt e z) :
deriv (fun (x : ) => e x) z = deriv e z
theorem Differentiable.comp_ofReal {e : } (h : Differentiable e) :
Differentiable fun (x : ) => e x
theorem DifferentiableAt.ofReal_comp {z : } {f : } (hf : DifferentiableAt f z) :
DifferentiableAt (fun (y : ) => (f y)) z
theorem Differentiable.ofReal_comp {f : } (hf : Differentiable f) :
Differentiable fun (y : ) => (f y)
theorem HasDerivAt.of_hasDerivAt_ofReal_comp {z : } {f : } {u : } (hf : HasDerivAt (fun (y : ) => (f y)) u z) :
∃ (u' : ), u = u' HasDerivAt f u' z
theorem DifferentiableAt.ofReal_comp_iff {z : } {f : } :
DifferentiableAt (fun (y : ) => (f y)) z DifferentiableAt f z
theorem deriv.ofReal_comp {z : } {f : } :
deriv (fun (y : ) => (f y)) z = (deriv f z)