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Chapter 1

Complex Analysis

Lemma 1 (Log growth). For 𝑡 > 1 we have 2 log 𝑡 ≤ 𝑂(log 𝑡)
Proof. Uses definition of big 𝑂(.)
Lemma 2 (Square log). For 𝑡 ≥ 2 we have log(𝑡2) = 2 log 𝑡
Proof.

Lemma 3 (Double log). For 𝑡 ≥ 2 we have log(2𝑡) ≤ log(𝑡2)
Proof. Uses 2𝑡 ≤ 𝑡2, and log(𝑡) monotonically increasing.

Lemma 4 (Log compare). For 𝑡 ≥ 2 we have log(2𝑡) ≤ 2 log 𝑡
Proof. Apply Lemmas 2 and 3.

Lemma 5 (Exp rule). For any 𝑛 ≥ 1 and 𝛼, 𝛽 ∈ ℂ we have 𝑛𝛼+𝛽 = 𝑛𝛼 ⋅ 𝑛𝛽

Proof.

Lemma 6 (Real scale). For 𝑏 ∈ ℝ and 𝑤 ∈ ℂ we have ℜ(𝑏𝑤) = 𝑏ℜ(𝑤).
Proof.

Lemma 7 (Real series). For a convergent series 𝑣 = ∑∞
𝑛=1 𝑣𝑛 with 𝑣𝑛 ∈ ℂ, we have ℜ(𝑣) =

∑∞
𝑛=1 ℜ(𝑣𝑛).

Proof.

Lemma 8 (Euler’s formula). For 𝑎 ∈ ℝ we have 𝑒𝑖𝑎 = cos(𝑎) + 𝑖 sin(𝑎)
Proof.

Lemma 9 (Real cosine). For 𝑎 ∈ ℝ we have ℜ(𝑒𝑖𝑎) = cos(𝑎)
Proof. Apply Lemma 8.

Lemma 10 (Log inverse). For 𝑛 ≥ 1 we have 𝑛 = 𝑒log 𝑛.

Proof.
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Lemma 11 (Cos even). For 𝑎 ∈ ℝ we have cos(−𝑎) = cos(𝑎)
Proof.

Lemma 12 (Cos even). For 𝑛 ≥ 1, 𝑦 ∈ ℝ we have cos(−𝑦 log 𝑛) = cos(𝑦 log 𝑛)
Proof. Let 𝑎 = 𝑦 log 𝑛. Since 𝑛 ≥ 1 we have log 𝑛 ≥ 0, so 𝑎 ∈ ℝ. Apply Lemma 11 with
𝑎 = 𝑦 log 𝑛.

Lemma 13 (Exp form). For 𝑛 ≥ 1 and 𝑦 ∈ ℝ we have 𝑛−𝑖𝑦 = 𝑒−𝑖𝑦 log 𝑛.

Proof. By Lemma 10 𝑛−𝑖𝑦 = (𝑒log 𝑛)−𝑖𝑦. Then (𝑒log 𝑛)−𝑖𝑦 = 𝑒−𝑖𝑦 log 𝑛 so 𝑛−𝑖𝑦 = 𝑒−𝑖𝑦 log 𝑛.

Lemma 14 (Real cosine). For 𝑛 ≥ 1 and 𝑦 ∈ ℝ we have ℜ(𝑒−𝑖𝑦 log 𝑛) = cos(−𝑦 log 𝑛).
Proof. Let 𝑎 = −𝑦 log 𝑛 so 𝑒𝑎 = 𝑒−𝑖𝑦 log 𝑛. Apply Lemma 9 with 𝑎 = −𝑦 log 𝑛.

Lemma 15 (Real cosine). For 𝑛 ≥ 1 and 𝑦 ∈ ℝ we have ℜ(𝑛−𝑖𝑦) = cos(−𝑦 log 𝑛).
Proof. Apply Lemmas 13 and 14.

Lemma 16 (Real cosine). For 𝑛 ≥ 1 and 𝑦 ∈ ℝ we have ℜ(𝑛−𝑖𝑦) = cos(𝑦 log 𝑛).
Proof. Apply Lemmas 12 and 15.

Lemma 17 (Double angle). For any 𝜃 ∈ ℝ we have cos(2𝜃) = 2 cos(𝜃)2 − 1.

Proof.

Lemma 18 (Cos square). For any 𝜃 ∈ ℝ we have 2 cos(𝜃)2 = 1 + cos(2𝜃).
Proof. Apply Lemma 17

Lemma 19 (Square expand). For any 𝜃 ∈ ℝ we have 2(1 + cos(𝜃))2 = 2 + 4 cos(𝜃) + 2 cos(𝜃)2.

Proof. We calculate 2(1 + cos(𝜃))2 = 2(1 + 2 cos(𝜃) + cos(𝜃)2) = 2 + 4 cos(𝜃) + 2 cos(𝜃)2.
Lemma 20 (Trig identity). For any 𝜃 ∈ ℝ we have 2(1 + cos(𝜃))2 = 3 + 4 cos(𝜃) + cos(2𝜃).
Proof. Apply Lemmas 18 and 19.

Lemma 21 (Square nonneg). For 𝑦 ∈ ℝ we have 0 ≤ 𝑦2.

Proof.

Lemma 22 (Double square). For 𝑦 ∈ ℝ we have 0 ≤ 2𝑦2.

Proof. Apply Lemma 21.

Lemma 23 (Cos square). For any 𝜃 ∈ ℝ we have 0 ≤ 2(1 + cos(𝜃))2.

Proof. Apply Lemma 22 with 𝑦 = 1 + cos(𝜃).
Lemma 24 (Trig positive). For any 𝜃 ∈ ℝ we have 0 ≤ 3 + 4 cos(𝜃) + cos(2𝜃).
Proof. Apply Lemmas 20 and 23.

Lemma 25 (Trig positive). For 𝑛 ≥ 1 and 𝑡 ∈ ℝ we have 0 ≤ 3 + 4 cos(𝑡 log 𝑛) + cos(2𝑡 log 𝑛).
Proof. Apply Lemma 24 with 𝜃 = 𝑡 log 𝑛.

2



Lemma 26 (Series positive). For a convergent series 𝑟 = ∑∞
𝑛=1 𝑟𝑛, if 𝑟𝑛 ≥ 0 for all 𝑛 ≥ 1, then

𝑟 ≥ 0.

Proof.

Lemma 27 (Real part diff). For any 𝑤 ∈ ℂ, ℜ(2𝑀 − 𝑤) = 2𝑀 − ℜ(𝑤).
Proof.

Lemma 28 (Real part 2M). We have ℜ(2𝑀 − 𝑓(𝑧)) = 2𝑀 − ℜ(𝑓(𝑧)).
Proof. Apply Lemma 27 with 𝑤 = 𝑓(𝑧).
Lemma 29 (Inequality reversal). For 𝑥, 𝑀 ∈ ℝ, if 𝑥 ≤ 𝑀 then 2𝑀 − 𝑥 ≥ 𝑀 .

Proof.

Lemma 30 (Real part lower bound). For 𝑤 ∈ ℂ and 𝑀 > 0, if ℜ(𝑤) ≤ 𝑀 then 2𝑀−ℜ(𝑤) ≥ 𝑀 .

Proof. Apply Lemma 29 with 𝑥 = ℜ(𝑤).
Lemma 31 (Real part bound). For 𝑤 ∈ ℂ and 𝑀 > 0, if ℜ(𝑤) ≤ 𝑀 then ℜ(2𝑀 − 𝑤) ≥ 𝑀 .

Proof. Apply Lemmas 28 and 30.

Lemma 32 (Real part >0). For 𝑤 ∈ ℂ and 𝑀 > 0, if ℜ(𝑤) ≤ 𝑀 then ℜ(2𝑀 − 𝑤) > 0.

Proof. Apply Lemmas 28 and 30 with 𝑤 = 𝑓(𝑧).
Lemma 33 (Pos real nonzero). If 𝑤 ∈ ℂ has ℜ(𝑤) > 0, then 𝑤 ≠ 0.

Proof.

Lemma 34 (2M minus nonzero). For 𝑤 ∈ ℂ and 𝑀 > 0, if ℜ(𝑤) ≤ 𝑀 then 2𝑀 − 𝑤 ≠ 0.

Proof. Apply Lemmas 32 and 33.

Lemma 35 (Absolute value positive). Let 𝑧 ∈ ℂ. If 𝑧 ≠ 0 then |𝑧| > 0.

Proof.

Lemma 36 (2M minus mod). For 𝑤 ∈ ℂ and 𝑀 > 0, if ℜ(𝑤) ≤ 𝑀 then |2𝑀 − 𝑤| > 0.

Proof. Apply Lemmas 34 and 35 with 𝑧 = 2𝑀 − 𝑤.

Lemma 37 (Real imaginary). For any 𝑤 ∈ ℂ, we have 𝑤 = ℜ(𝑤) + 𝑖ℑ𝑤.

Proof.

Lemma 38 (Mod square). For any 𝑎, 𝑏 ∈ ℝ, we have |𝑎 + 𝑖𝑏|2 = 𝑎2 + 𝑏2.

Proof.

Lemma 39 (Shifted mod). For any 𝑎, 𝑏, 𝑐 ∈ ℝ, we have |𝑐 − 𝑎 − 𝑖𝑏|2 = (𝑐 − 𝑎)2 + 𝑏2.

Proof.

Lemma 40 (Mod diff). For any 𝑎, 𝑏, 𝑐 ∈ ℝ, we have |𝑐 − 𝑎 − 𝑖𝑏|2 − |𝑎 + 𝑖𝑏|2 = (𝑐 − 𝑎)2 − 𝑎2.

Proof. Apply Lemmas 39 and 38.

3



Lemma 41 (Square expand). For any 𝑎, 𝑐 ∈ ℝ, we have (𝑐 − 𝑎)2 = 𝑎2 − 2𝑎𝑐 + 𝑐2.

Proof.

Lemma 42 (Square diff). For any 𝑎, 𝑐 ∈ ℝ, we have (𝑐 − 𝑎)2 − 𝑎2 = 2𝑐(𝑐 − 𝑎).
Proof. Apply Lemma 41

Lemma 43 (Mod diff). For any 𝑎, 𝑏, 𝑐 ∈ ℝ, we have |𝑐 − 𝑎 − 𝑖𝑏|2 − |𝑎 + 𝑖𝑏|2 = 2𝑐(𝑐 − 𝑎).
Proof. Apply Lemmas 40 and 42.

Lemma 44 (Modulus diff). For any 𝑤 ∈ ℂ, |2𝑀 − ℜ(𝑤) − 𝑖ℑ𝑤|2 − |ℜ(𝑤) + 𝑖ℑ𝑤|2 = 4𝑀(𝑀 −
ℜ(𝑤)).
Proof. Apply Lemma 43 with 𝑎 = ℜ(𝑤) and 𝑏 = ℑ𝑤 and 𝑐 = 2𝑀 .

Lemma 45 (Modulus identity). For any 𝑤 ∈ ℂ, |2𝑀 − 𝑤|2 − |𝑤|2 = 4𝑀(𝑀 − ℜ(𝑤)).
Proof. Apply Lemmas 44 and 37

Lemma 46 (Nonneg product). If 𝑀 > 0 and 𝑥 ≤ 𝑀 , then 4𝑀(𝑀 − 𝑥) ≥ 0.

Proof.

Lemma 47 (Nonneg product). Let 𝑀 > 0 and 𝑤 ∈ ℂ. If ℜ(𝑤) ≤ 𝑀 then 4𝑀(𝑀 − ℜ(𝑤)) ≥ 0.

Proof. Apply Lemma 46 with 𝑥 = ℜ(𝑤).
Lemma 48 (Modulus compare). Let 𝑀 > 0 and 𝑤 ∈ ℂ. If ℜ(𝑤) ≤ 𝑀 then |2𝑀 −𝑤|2−|𝑤|2 ≥ 0.

Proof. Apply Lemmas 45 and 47

Lemma 49 (Modulus bound). Let 𝑀 > 0 and 𝑤 ∈ ℂ. If ℜ(𝑤) ≤ 𝑀 then |2𝑀 − 𝑤|2 ≥ |𝑤|2.

Proof. Apply Lemma 48.

Lemma 50 (Modulus bound). Let 𝑀 > 0 and 𝑤 ∈ ℂ. If ℜ(𝑤) ≤ 𝑀 then |2𝑀 − 𝑤| ≥ |𝑤|.
Proof. Apply Lemma 49 and take non-negative square-root.

Lemma 51 (Modulus order). Let 𝑀 > 0 and 𝑤 ∈ ℂ. If ℜ(𝑤) ≤ 𝑀 then |𝑤| ≤ |2𝑀 − 𝑤|.
Proof. Apply Lemma 50.

Lemma 52 (Divide inequality). If 𝑐 > 0 and 0 ≤ 𝑎 ≤ 𝑏, then 𝑎/𝑐 ≤ 𝑏/𝑐.

Proof.

Lemma 53 (Ratio bound). If 𝑏 > 0 and 0 ≤ 𝑎 ≤ 𝑏, then 𝑎/𝑏 ≤ 1.

Proof. Apply Lemma 52 with 𝑐 = 𝑏 > 0.

Lemma 54 (Ratio bound). Let 𝑀 > 0 and 𝑤 ∈ ℂ. If |2𝑀 − 𝑤| > 0 and |𝑤| ≤ |2𝑀 − 𝑤| then
|𝑤|

|2𝑀−𝑤| ≤ 1.

Proof. Apply Lemmas 36 and 51 and 53 with 𝑎 = |𝑤| and 𝑏 = |2𝑀 − 𝑤|.
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Lemma 55 (Ratio bound). Let 𝑀 > 0 and 𝑤 ∈ ℂ. If ℜ(𝑤) ≤ 𝑀 and |𝑤| ≤ |2𝑀 − 𝑤| then
|𝑤|

|2𝑀−𝑤| ≤ 1.

Proof. Apply Lemmas 36 and 54.

Lemma 56 (Ratio bound). Let 𝑀 > 0 and 𝑤 ∈ ℂ. If ℜ(𝑤) ≤ 𝑀 then |𝑤|
|2𝑀−𝑤| ≤ 1.

Proof. Apply Lemmas 51 and 55.

Lemma 57 (Triangle inequality). Let 𝑁, 𝐺 ∈ ℂ. We have |𝑁 + 𝐺| ≤ |𝑁| + |𝐺|
Proof.

Lemma 58 (Triangle minus). Let 𝑁, 𝐹 ∈ ℂ. We have |𝑁 − 𝐹| ≤ |𝑁| + |𝐹 |
Proof. Apply Lemma 57 with 𝐺 = −𝐹 .

Lemma 59 (Scaled triangle). Let 𝑟 > 0 and 𝑁, 𝐹 ∈ ℂ. We have 𝑟|𝑁 − 𝐹| ≤ 𝑟(|𝑁| + |𝐹 |)
Proof. Apply Lemmas 57 and 52 with 𝑎 = |𝑁 − 𝐹| and 𝑏 = (|𝑁| + |𝐹 |).
Lemma 60 (Scaled triangle). Let 𝑟 > 0 and 𝑁, 𝐹 ∈ ℂ. We have 𝑟|𝑁 − 𝐹| ≤ 𝑟|𝑁| + 𝑟|𝐹 |
Proof. Apply Lemma 59

Lemma 61 (Ineq step). Let 0 < 𝑟 < 𝑅 and 𝑁, 𝐹 ∈ ℂ. If 𝑅|𝐹 | ≤ 𝑟|𝑁−𝐹| then 𝑅|𝐹 | ≤ 𝑟|𝑁|+𝑟|𝐹 |
Proof. Apply assumption 𝑅|𝐹 | ≤ 𝑟|𝑁 − 𝐹| and Lemma 60

Lemma 62 (Rearranged bound). Let 0 < 𝑟 < 𝑅 and 𝑁, 𝐹 ∈ ℂ. If 𝑅|𝐹 | ≤ 𝑟|𝑁 − 𝐹| then
(𝑅 − 𝑟)|𝐹 | ≤ 𝑟|𝑁|
Proof. Apply Lemma 61

Lemma 63 (Abs positive). For 𝑎 ∈ ℝ, if 𝑎 > 0 then |𝑎| = 𝑎.

Proof.

Lemma 64 (Double positive). For 𝑎 ∈ ℝ, if 𝑎 > 0 then 2𝑎 > 0.

Proof.

Lemma 65 (Scaled abs). For 𝑎 ∈ ℝ, if 𝑎 > 0 then |2𝑎| = 2𝑎.

Proof. Apply Lemmas 63 and 64

Lemma 66 (Key bound). Let 0 < 𝑟 < 𝑅, 𝑀 > 0, and 𝐹 ∈ ℂ. If 𝑅𝐹 ≤ 𝑟|2𝑀 − 𝐹| then
(𝑅 − 𝑟)|𝐹 | ≤ 2𝑀𝑟
Proof. Apply Lemma 62 with 𝑁 = 2𝑀 , and Lemma 65 with 𝑎 = 𝑀 .

Lemma 67 (Nonneg factor). Let 0 < 𝑟 < 𝑅 and 𝐹 ∈ ℂ. Then we have (𝑅 − 𝑟)|𝐹 | ≥ 0
Proof.

Lemma 68 (Divide bound). Let 0 < 𝑟 < 𝑅, 𝑀 > 0, and 𝐹 ∈ ℂ. If (𝑅 − 𝑟)|𝐹 | ≤ 2𝑀𝑟 then
|𝐹 | ≤ 2𝑀𝑟

𝑅−𝑟 .
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Proof. Apply Lemma 52 with 𝑐 = (𝑅 − 𝑟) > 0 and 𝑎 = (𝑅 − 𝑟)|𝐹 | and 𝑏 = 2𝑀𝑟. Lemma 67
gives 𝑎 ≥ 0.

Lemma 69 (Final bound). Let 0 < 𝑟 < 𝑅, 𝑀 > 0, and 𝐹 ∈ ℂ. If 𝑅|𝐹 | ≤ 𝑟|2𝑀 − 𝐹| then
|𝐹 | ≤ 2𝑀𝑟

𝑅−𝑟

Proof. Apply Lemmas 66 and 68.

Lemma 70 (Order nonzero). Let 𝑓 ∶ ℂ → ℂ be analytic, and let 𝑛0 be the analyticOrderAt for
𝑓 at 0. If 𝑓(0) = 0 then 𝑛0 ≠ 0.

Proof.

Lemma 71 (Order natural). Let 𝑓 ∶ ℂ → ℂ be analytic, and let 𝑛0 be the analyticOrderAt for 𝑓
at 0. If 𝑓 ≠ 0 then 𝑛0 ∈ ℕ.

Proof.

Lemma 72 (Factor power). Let 𝑓 ∶ ℂ → ℂ be analytic at 0, and let 𝑛0 be the analyticOrderAt
for 𝑓 at 0. If 𝑛0 ∈ ℕ then there exists a nhd 𝑁 of 0 and 𝑔 ∶ ℂ → ℂ such that 𝑔 is analytic at 0,
and 𝑓(𝑧) = 𝑧𝑛0𝑔(𝑧) on 𝑁 .

Proof.

Lemma 73 (Factor linear). Let 𝑓 ∶ ℂ → ℂ be analytic at 0, and let 𝑛0 be the analyticOrderAt
for 𝑓 at 0. If 𝑛0 ∈ ℕ and 𝑛0 ≠ 0, then there exists a nhd 𝑁 of 0 and ℎ ∶ ℂ → ℂ such that ℎ is
analytic at 0, and 𝑓(𝑧) = 𝑧ℎ(𝑧) on 𝑁 .

Proof. Apply Lemma 72 and let ℎ(𝑧) = 𝑧𝑛0−1𝑔(𝑧).
Lemma 74 (Divide zero). Let 𝑓 ∶ ℂ → ℂ be analytic at 0, and let 𝑛0 be the analyticOrderAt for
𝑓 at 0. If 𝑓 ≠ 0 and 𝑓(0) = 0, then ℎ(𝑧) = 𝑓(𝑧)/𝑧 is analytic at 0.

Proof. Apply Lemmas 71 and 73 and 70

Lemma 75 (Inverse analytic). The function 𝑓1(𝑧) = 1
𝑧 is analytic on {𝑧 ∈ ℂ ∶ 𝑧 ≠ 0}.

Proof.

Lemma 76 (Analytic mono). Let 𝑇 ⊂ 𝑆 ⊂ ℂ and 𝑓 ∶ 𝑆 → ℂ. If 𝑓 is analytic on 𝑆 then 𝑓 is
analytic on 𝑇 .

Proof.

Lemma 77 (Nonzero subset). Let 0 < 𝑅 < 1 and 𝑉 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0} and 𝑈 = {𝑧 ∈ ℂ ∶ 𝑧 ≠
0}. Then 𝑉 ⊂ 𝑈 .

Proof. unfold definitions, using 𝔻𝑅 ⊂ ℂ.

Lemma 78 (Inverse analytic). The function 𝑓1(𝑧) = 1
𝑧 is analytic on 𝑇 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0}.

Proof. Apply Lemmas 77 and 75 and 76 with 𝑆 = {𝑧 ∈ ℂ ∶ 𝑧 ≠ 0} and 𝑇 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0}.

Lemma 79 (Product analytic). Let 𝑇 ⊂ 𝑆 ⊂ ℂ, and let 𝑓1 ∶ 𝑆 → ℂ and 𝑓2 ∶ 𝑆 → ℂ. If 𝑓1 is
analytic on 𝑇 and 𝑓2 is analytic on 𝑇 , then 𝑓1 ⋅ 𝑓2 is analytic on 𝑇 .

Proof.
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Lemma 80 (Product analytic). Let 𝑇 ⊂ 𝑆 ⊂ ℂ, and let 𝑓1 ∶ 𝑆 → ℂ and 𝑓2 ∶ 𝑆 → ℂ. If 𝑓1 is
analytic on 𝑇 and 𝑓2 is analytic on 𝑆, then 𝑓1 ⋅ 𝑓2 is analytic on 𝑇 .

Proof. Apply Lemmas 79 and 76 with 𝑓 = 𝑓2

Lemma 81 (Product analytic). Let 𝑇 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0} and 𝑓1 ∶ ℂ → ℂ and 𝑓2 ∶ ℂ → ℂ. If
𝑓1 is analytic on 𝑇 and 𝑓2 is analytic on 𝔻𝑅, then 𝑓1 ⋅ 𝑓2 is analytic on 𝑇 .

Proof. Apply Lemmas 80 with 𝑆 = 𝔻𝑅 and 𝑇 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0}.

Lemma 82 (Quotient analytic). Let 𝑇 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0} and 𝑓 ∶ ℂ → ℂ. If 𝑓(𝑧) is analytic
on 𝔻𝑅, then 𝑓(𝑧)/𝑧 is analytic on 𝑇 .

Proof. Apply Lemmas 78 and 81 with 𝑓1(𝑧) = 1/𝑧 and 𝑓2(𝑧) = 𝑓(𝑧).
Lemma 83 (On implies within). Let 𝑉 ⊂ ℂ and ℎ ∶ ℂ → ℂ. If ℎ is AnalyticOn 𝑉 , then ℎ is
AnalyticWithinAt 𝑧 for all 𝑧 ∈ 𝑉 .

Proof.

Lemma 84 (Within implies on). Let ℎ ∶ ℂ → ℂ. If ℎ is AnalyticWithinAt 𝑧 for all 𝑧 ∈ 𝔻𝑅,
then ℎ is AnalyticOn 𝔻𝑅.

Proof.

Lemma 85 (Disk split). Let 𝑇 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0}. Then 𝔻𝑅 = {0} ∪ 𝑇 .

Proof. Unfold definition of 𝑇 .

Lemma 86 (Within union). Let 𝑇 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0} and ℎ ∶ ℂ → ℂ. If ℎ is AnalyticWithinAt
0 and ℎ is AnalyticWithinAt 𝑧 for all 𝑧 ∈ 𝑇 , then ℎ is AnalyticWithinAt 𝑧 for all 𝑧 ∈ 𝔻𝑅.

Proof. Apply Lemma 85.

Lemma 87 (Within gives on). Let 𝑇 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0} and ℎ ∶ ℂ → ℂ. If ℎ is AnalyticWithi-
nAt 0 and ℎ is AnalyticWithinAt 𝑧 for all 𝑧 ∈ 𝑇 , then ℎ is AnalyticOn 𝔻𝑅.

Proof. Apply Lemmas 84 and 86

Lemma 88 (At to within). Let ℎ ∶ ℂ → ℂ. If ℎ is AnalyticAt 0, then ℎ is AnalyticWithinAt 0.

Proof.

Lemma 89 (Local to global). Let 𝑇 = {𝑧 ∈ 𝔻𝑅 ∶ 𝑧 ≠ 0} and ℎ ∶ ℂ → ℂ. If ℎ is AnalyticAt 0
and ℎ is AnalyticOn 𝑇 , then ℎ is AnalyticOn 𝔻𝑅.

Proof. Apply Lemmas 88 and 87.
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1.1 Borel-Carathéodory I
Definition 90 (Open disk). For 𝑅 > 0, define the open ball 𝔻𝑅 ∶= {𝑧 ∈ ℂ ∶ |𝑧| < 𝑅}.

Lemma 91 (Disk closure). For 𝑅 > 0, the closure of 𝔻𝑅 equals 𝔻𝑅 ∶= {𝑧 ∈ ℂ ∶ |𝑧| ≤ 𝑅}
Proof.

Lemma 92 (In disk bound). For 𝑅 > 0, if 𝑤 ∈ 𝔻𝑅 then |𝑤| ≤ 𝑅.

Proof. Apply Lemma 91.

Lemma 93 (Outside disk bound). For 𝑅 > 0, if 𝑤 ∉ 𝔻𝑅 then |𝑤| ≥ 𝑅.

Proof. Apply definition 90.

Lemma 94 (Modulus equal). For 𝑅 > 0, if |𝑤| ≤ 𝑅 and |𝑤| ≥ 𝑅 then |𝑤| = 𝑅.

Proof.

Lemma 95 (Boundary modulus). For 𝑅 > 0, if 𝑤 ∈ 𝔻𝑅 and 𝑤 ∉ 𝔻𝑅, then |𝑤| = 𝑅.

Proof. Apply Lemmas 92 and 93 and 94.

Lemma 96 (Positive modulus). For 𝑅 > 0 we have |𝑅| = 𝑅.

Proof.

Lemma 97 (Modulus bound). For 𝑅 > 0 we have |𝑅| ≤ 𝑅.

Proof. Apply Lemma 96 and 𝑅 ≤ 𝑅.

Lemma 98 (Positive radius belongs to its closed disk). For 𝑅 > 0 we have 𝑅 ∈ 𝔻𝑅.

Proof. Apply Lemma 97 and definition 90

Lemma 99 (Compactness). For 𝑅 > 0 the ball 𝔻𝑅 is a compact subset of ℂ.

Proof.

Lemma 100 (ExtrValThm). If 𝐾 ⊂ ℂ is compact and 𝑔 ∶ 𝐾 → ℂ is continuous, then there
exists 𝑣 ∈ 𝐾 such that |𝑔(𝑣)| ≥ |𝑔(𝑧)| for all 𝑧 ∈ 𝐾.

Proof.

Lemma 101 (Disk Boundary). If 𝑔 ∶ 𝔻𝑅 → ℂ is continuous, then there exists 𝑣 ∈ 𝔻𝑅 such that
|𝑔(𝑣)| ≥ |𝑔(𝑧)| for all 𝑧 ∈ 𝔻𝑅.

Proof. Apply Lemmas 99 and 100 with 𝐾 = 𝔻𝑅.

Lemma 102 (Analytic Continuation). If ℎ ∶ 𝔻𝑅 → ℂ is analytic, then ℎ is continuous.

Proof.

Lemma 103 (Max modulus). If ℎ ∶ 𝔻𝑅 → ℂ is analytic, then there exists 𝑢 ∈ 𝔻𝑅 such that
|ℎ(𝑢)| ≥ |ℎ(𝑧)| for all 𝑧 ∈ 𝔻𝑅.

Proof. Apply Lemmas 101 and 102 with 𝑔(𝑧) = ℎ(𝑧) and 𝑢 = 𝑣.
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Lemma 104 (Interior max). Let 𝑅 > 0. Let ℎ ∶ 𝔻𝑅 → ℂ be analytic. Suppose there exists
𝑤 ∈ 𝔻𝑅 such that |ℎ(𝑤)| ≥ |ℎ(𝑧)| for all 𝑧 ∈ 𝔻𝑅. Then |ℎ(𝑧)| = |ℎ(𝑤)| for all 𝑧 ∈ 𝔻𝑅.

Proof. Apply Lemma 91

Lemma 105 (Boundary value). Let 𝑅 > 0. Let ℎ ∶ 𝔻𝑅 → ℂ be analytic. Suppose there exists
𝑤 ∈ 𝔻𝑅 such that |ℎ(𝑤)| ≥ |ℎ(𝑧)| for all 𝑧 ∈ 𝔻𝑅. Then |ℎ(𝑅)| = |ℎ(𝑤)|.
Proof. Apply Lemmas 104 and 98 with 𝑧 = 𝑅.

Lemma 106 (Boundary bound). Let 𝑅 > 0. Let ℎ ∶ 𝔻𝑅 → ℂ be analytic. Suppose there exists
𝑤 ∈ 𝔻𝑅 such that |ℎ(𝑤)| ≥ |ℎ(𝑧)| for all 𝑧 ∈ 𝔻𝑅. Then |ℎ(𝑅)| ≥ |ℎ(𝑧)| for all 𝑧 ∈ 𝔻𝑅

Proof. Apply Lemmas 104 and 105

Lemma 107 (Boundary point). Let 𝑅 > 0. Let ℎ ∶ 𝔻𝑅 → ℂ be analytic. There exists 𝑣 ∈ 𝔻𝑅
with |𝑣| = 𝑅 such that |ℎ(𝑣)| ≥ |ℎ(𝑧)| for all 𝑧 ∈ 𝔻𝑅

Proof. Apply Lemma 103 to get 𝑢 ∈ 𝔻𝑅 such that |ℎ(𝑢)| ≥ |ℎ(𝑧)| for all 𝑧 ∈ 𝔻𝑅. If 𝑢 ∈ 𝔻𝑅 then
set 𝑣 = 𝑅. Now by Lemma 106 we have |𝑣| = |𝑅| = 𝑅. Else 𝑢 ∉ 𝔻𝑅, then set 𝑣 = 𝑢. Now by
Lemma 95 with 𝑤 = 𝑢 we have |𝑣| = |𝑢| = 𝑅.

Lemma 108 (Boundary point). Let 𝑅 > 0. Let ℎ(𝑧) be analytic on |𝑧| ≤ 𝑅. There exists 𝑣 ∈ ℂ
with |𝑣| = 𝑅 such that |ℎ(𝑣)| ≥ |ℎ(𝑧)| for all 𝑧 ∈ ℂ with |𝑧| ≤ 𝑅.

Proof. Apply Lemma 107, and apply Lemma 92 for 𝑤 = 𝑣 and then again for 𝑤 = 𝑧.

Lemma 109 (Boundary max). Let 𝑅 > 0 and 𝐵 ≥ 0. Let ℎ(𝑧) be a function analytic on |𝑧| ≤ 𝑅.
Suppose that |ℎ(𝑧)| ≤ 𝐵 for all 𝑧 ∈ ℂ with |𝑧| = 𝑅. Then there exists 𝑣 ∈ ℂ with |𝑣| = 𝑅 such
that |ℎ(𝑣)| ≥ |ℎ(𝑤)| for all 𝑤 ∈ ℂ with |𝑤| ≤ 𝑅, and |ℎ(𝑣)| ≤ 𝐵.

Proof. Apply Lemma 108, and the assumption |ℎ(𝑧)| ≤ 𝐵 with 𝑧 = 𝑣, since |𝑣| = 𝑅.

Lemma 110 (Max principle). Let 𝑅 > 0 and 𝐵 ≥ 0. Let ℎ(𝑧) be a function analytic on |𝑧| ≤ 𝑅.
Suppose that |ℎ(𝑧)| ≤ 𝐵 for all 𝑧 ∈ ℂ with |𝑧| = 𝑅. Then |ℎ(𝑤)| ≤ 𝐵 for all 𝑤 ∈ ℂ with |𝑤| ≤ 𝑅.

Proof. Apply Lemma 109. By assumption we calculate |ℎ(𝑤)| ≤ |ℎ(𝑣)| ≤ 𝐵 for all 𝑤 ∈ ℂ with
|𝑤| ≤ 𝑅.

Lemma 111 (Easy maximum principle). Let 𝑅 > 0 and 𝐵 ≥ 0. Let ℎ(𝑧) be a function analytic
on |𝑧| ≤ 𝑅. Suppose that |ℎ(𝑤)| ≤ 𝐵 for all 𝑤 ∈ ℂ with |𝑤| ≤ 𝑅. Then |ℎ(𝑧)| ≤ 𝐵 for all 𝑧 ∈ ℂ
with |𝑧| = 𝑅.

Proof. Take 𝑧 ∈ ℂ with |𝑧| = 𝑅. Then |𝑧| ≤ 𝑅, so by assumption with 𝑤 = 𝑧 we have
|ℎ(𝑧)| ≤ 𝐵.

Lemma 112 (Maximum modulus principle). Let 𝑇 > 0 and 𝐵 ≥ 0. Let ℎ(𝑧) be a function
analytic on |𝑧| ≤ 𝑇 . We have |ℎ(𝑧)| ≤ 𝐵 for all 𝑧 ∈ ℂ with |𝑧| ≤ 𝑇 if and only if |ℎ(𝑧)| ≤ 𝐵 for
all 𝑧 ∈ ℂ with |𝑧| = 𝑇 .

Proof. Apply Lemmas 110 and 111 with 𝑅 = 𝑇 .

Lemma 113 (Denom nonzero). Let 𝑅, 𝑀 > 0. Suppose 𝑓(𝑧) is an analytic function on |𝑧| ≤ 𝑅
satisfying ℜ(𝑓(𝑧)) ≤ 𝑀 . Then 2𝑀 − 𝑓(𝑧) ≠ 0 for all |𝑧| ≤ 𝑅.

Proof. For each 𝑧 with |𝑧| ≤ 𝑅, apply Lemma 34 with 𝑤 = 𝑓(𝑧).
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Lemma 114 (Ratio bound). Let 𝑅, 𝑀 > 0. Suppose 𝑓(𝑧) is an analytic function on |𝑧| ≤ 𝑅
satisfying ℜ(𝑓(𝑧)) ≤ 𝑀 . For any 𝑧 with |𝑧| ≤ 𝑅, we have |𝑓(𝑧)|

|2𝑀−𝑓(𝑧)| ≤ 1.

Proof. For each 𝑧 with |𝑧| ≤ 𝑅, apply Lemma 56 with 𝑤 = 𝑓(𝑧).
Lemma 115 (Removable zero). Let 𝑅 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0.
Then the function ℎ(𝑧) = 𝑓(𝑧)/𝑧 is analytic on |𝑧| ≤ 𝑅.

Proof. Apply theorems 74, 82 and 89.

Lemma 116 (Quotient analytic). Let 𝑅 > 0. If ℎ1(𝑧) and ℎ2(𝑧) are analytic for |𝑧| ≤ 𝑅 and
ℎ2(𝑧) ≠ 0 for all |𝑧| ≤ 𝑅, then ℎ1(𝑧)/ℎ2(𝑧) is analytic for |𝑧| ≤ 𝑅.

Proof.

Definition 117 (Modified function). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that
𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. Define the function 𝑓𝑀(𝑧) for |𝑧| ≤ 𝑅 as

𝑓𝑀(𝑧) = 𝑓(𝑧)/𝑧
2𝑀 − 𝑓(𝑧) .

Lemma 118 (g analytic). The function 𝑓𝑀(𝑧) from Definition 117 is analytic on |𝑧| ≤ 𝑅.

Proof. Write 𝑓𝑀(𝑧) = ℎ1(𝑧)/ℎ2(𝑧) where ℎ1(𝑧) = 𝑓(𝑧)/𝑧 and ℎ2(𝑧) = 2𝑀 − 𝑓(𝑧). Then apply
Lemma 116 with ℎ1(𝑧) and ℎ2(𝑧), using Lemma 115 and Lemma 113.

Lemma 119 (Quotient modulus). Let 𝑎, 𝑏 ∈ ℂ. If 𝑏 ≠ 0 then |𝑎/𝑏| = |𝑎|/|𝑏|.
Proof.

Lemma 120 (g modulus). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and
suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. We have |𝑓𝑀(𝑧)| = |𝑓(𝑧)/𝑧|

|2𝑀−𝑓(𝑧)| .

Proof. For each |𝑧| ≤ 𝑅, apply Definition 117, and Lemma 119 with 𝑎 = 𝑓(𝑧)/𝑧 and 𝑏 =
2𝑀 − 𝑓(𝑧). Note 𝑏 ≠ 0 by Lemma 113.

Lemma 121 (Quotient radius). Let 𝑇 > 0 and 𝑧, 𝑤 ∈ ℂ. If |𝑧| = 𝑇 then |𝑤/𝑧| = |𝑤|/𝑇 .

Proof.

Lemma 122 (Boundary g). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and
suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 𝑧 ∈ ℂ with |𝑧| = 𝑅, we have |𝑓𝑀(𝑧)| = |𝑓(𝑧)|/𝑅

|2𝑀−𝑓(𝑧)| .

Proof. Apply Lemmas 120 and 121 with 𝑤 = 𝑓(𝑧) and 𝑇 = 𝑅 > 0.

Lemma 123 (Scaled ratio). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and
suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 𝑧 with |𝑧| ≤ 𝑅, we have |𝑓(𝑧)|/𝑅

|2𝑀−𝑓(𝑧)| ≤ 1/𝑅.

Proof. Apply Lemma 114.

Lemma 124 (Boundary bound). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0
and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 𝑧 ∈ ℂ with |𝑧| = 𝑅, we have |𝑓𝑀(𝑧)| ≤ 1/𝑅.

Proof. Apply Lemmas 122 and 123.
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Lemma 125 (Interior bound). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0
and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 𝑧 ∈ ℂ with |𝑧| ≤ 𝑅, we have |𝑓𝑀(𝑧)| ≤ 1/𝑅.

Proof. Apply Lemmas 124 and 112 with 𝐵 = 1/𝑅 and 𝑇 = 𝑅 and ℎ(𝑧) = 𝑓𝑀(𝑧).
Lemma 126 (g at r). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and
suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 0 < 𝑟 < 𝑅 and any 𝑧 ∈ ℂ with |𝑧| = 𝑟, we have
|𝑓𝑀(𝑧)| = |𝑓(𝑧)|/𝑟

|2𝑀−𝑓(𝑧)| .

Proof. Apply Lemmas 120 and 121 with 𝑤 = 𝑓(𝑧) and 𝑇 = 𝑟 > 0.

Lemma 127 (g bound r). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and
suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 0 < 𝑟 < 𝑅 and any 𝑧 ∈ ℂ with |𝑧| = 𝑟, we have

|𝑓(𝑧)|/𝑟
|2𝑀−𝑓(𝑧)| ≤ 1/𝑅.

Proof. Apply Lemmas 125 and 126 with |𝑧| = 𝑟 < 𝑅.

Lemma 128 (Fraction swap). Let 𝑎, 𝑏, 𝑟, 𝑅 > 0. If 𝑎/𝑟
𝑏 ≤ 1/𝑅 then 𝑅𝑎 ≤ 𝑟𝑏.

Proof.

Lemma 129 (Rearranged bound). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that
𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 0 < 𝑟 < 𝑅 and any 𝑧 ∈ ℂ with
|𝑧| = 𝑟, we have 𝑅|𝑓(𝑧)| ≤ 𝑟|2𝑀 − 𝑓(𝑧)|.
Proof. Apply Lemmas 127 and 128 with 𝑎 = |𝑓(𝑧)| > 0 and 𝑏 = |2𝑀 − 𝑓(𝑧)| > 0.

Lemma 130 (Circle bound). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0
and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 0 < 𝑟 < 𝑅 and any 𝑧 ∈ ℂ with |𝑧| = 𝑟, we have

|𝑓(𝑧)| ≤ 2𝑟
𝑅 − 𝑟𝑀.

Proof. For each |𝑧| ≤ 𝑅, apply Lemmas 129 and 69 with 𝐹 = 𝑓(𝑧).
Lemma 131 (Circle bound). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0
and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 0 < 𝑟 < 𝑅, and any 𝑧 ∈ ℂ with |𝑧| = 𝑟 we have

|𝑓(𝑧)| ≤ 2𝑟
𝑅 − 𝑟𝑀.

Proof. Apply Lemma 130.

Lemma 132 (BC bound). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and
suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 0 < 𝑟 < 𝑅, and any 𝑧 ∈ ℂ with |𝑧| ≤ 𝑟 we have

|𝑓(𝑧)| ≤ 2𝑟
𝑅 − 𝑟𝑀.

Proof. Apply Lemmas 131 and 112 with 𝐵 = 2𝑟
𝑅−𝑟 𝑀 and 𝑇 = 𝑟 and ℎ(𝑧) = 𝑓(𝑧).

Theorem 133 (Borel-Carathéodory I). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that
𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 0 < 𝑟 < 𝑅,

sup
|𝑧|≤𝑟

|𝑓(𝑧)| ≤ 2𝑟
𝑅 − 𝑟𝑀.

Proof. Apply Lemma 132 and definition of supremum sup|𝑧|≤𝑟.
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1.2 Borel-Carathéodory II
Lemma 134 (Cauchy’s Integral Formula for 𝑓 ′). Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any 𝑧 with
|𝑧| ≤ 𝑟 and any 𝑟′ with 0 < 𝑟 < 𝑟′ < 𝑅,

𝑓 ′(𝑧) = 1
2𝜋𝑖 ∮

|𝑤|=𝑟′

𝑓(𝑤)
(𝑤 − 𝑧)2 𝑑𝑤.

Proof.

Lemma 135 (Differential of 𝑤(𝑡)). For 𝑤(𝑡) = 𝑟′𝑒𝑖𝑡, we have 𝑑𝑤 = 𝑖𝑟′𝑒𝑖𝑡𝑑𝑡.
Proof. Differentiate 𝑤(𝑡) with respect to 𝑡.
Lemma 136 (CIF for 𝑓 ′, Parameterized). Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any 𝑧 with |𝑧| ≤ 𝑟
and any 𝑟′ with 0 < 𝑟 < 𝑟′ < 𝑅,

𝑓 ′(𝑧) = 1
2𝜋𝑖 ∫

2𝜋

0

𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 (𝑖𝑟′𝑒𝑖𝑡) 𝑑𝑡.

Proof. Apply Lemmas 134 and 135, and unfold definition of the circle integral ∮ over 𝑤 ∈
𝐶(0, 𝑟′).
Lemma 137 (CIF for 𝑓 ′, Simplified). Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any 𝑧 with |𝑧| ≤ 𝑟 and
any 𝑟′ with 0 < 𝑟 < 𝑟′ < 𝑅,

𝑓 ′(𝑧) = 1
2𝜋 ∫

2𝜋

0

𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡

(𝑟′𝑒𝑖𝑡 − 𝑧)2 𝑑𝑡.

Proof. Apply Lemma 136 and cancel 𝑖 from the numerator and denominator.

Lemma 138 (Derivative modulus). Let 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any
𝑧 with |𝑧| ≤ 𝑟, we have |𝑓 ′(𝑧)| = ∣ 1

2𝜋 ∫2𝜋
0

𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡

(𝑟′𝑒𝑖𝑡−𝑧)2 𝑑𝑡∣.

Proof. Apply modulus to both sides of the equality in Lemma 137.

Lemma 139 (Integral bound). For an integrable function 𝑔(𝑡), we have | ∫𝑏
𝑎 𝑔(𝑡)𝑑𝑡| ≤ ∫𝑏

𝑎 |𝑔(𝑡)|𝑑𝑡.
Proof.

Lemma 140 (Modulus of 𝑓 ′). Let 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any 𝑧
with |𝑧| ≤ 𝑟, we have |𝑓 ′(𝑧)| ≤ 1

2𝜋 ∫2𝜋
0 ∣ 𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡

(𝑟′𝑒𝑖𝑡−𝑧)2 ∣ 𝑑𝑡.

Proof. Apply Lemmas 138 and 139.

Lemma 141 (Integrand modulus). Let 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any
𝑧 with |𝑧| ≤ 𝑟, we have |𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡| = |𝑓(𝑟′𝑒𝑖𝑡)| ⋅ |𝑟′𝑒𝑖𝑡|.
Proof. Apply modulus property |𝑎𝑏| = |𝑎||𝑏|.
Lemma 142 (Modulus one). For 𝑡 ∈ ℝ we have |𝑒𝑖𝑡| = 𝑒ℜ(𝑖𝑡)

Proof.
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Lemma 143 (Cosine part). For 𝑡 ∈ ℝ we have ℜ(𝑖𝑡) = 0
Proof.

Lemma 144 (Euler part). For 𝑡 ∈ ℝ we have 𝑒ℜ(𝑖𝑡) = 𝑒0.

Proof. Apply Lemma 143.

Lemma 145 (Exp zero one). We have 𝑒0 = 1.

Proof.

Lemma 146 (Cosine relation). For 𝑡 ∈ ℝ we have 𝑒ℜ(𝑖𝑡) = 1
Proof. Apply Lemmas 144 and 145

Lemma 147 (Unit modulus). For 𝑡 ∈ ℝ we have |𝑒𝑖𝑡| = 1
Proof. Apply Lemmas 142 and 146

Lemma 148 (Scaled modulus). For 𝑎 > 0 and 𝑡 ∈ ℝ we have |𝑎𝑒𝑖𝑡| = 𝑎
Proof. Apply Lemma 147 and calculate |𝑎𝑒𝑖𝑡| = |𝑎| ⋅ |𝑒𝑖𝑡| = 𝑎 ⋅ 1 = 𝑎.

Lemma 149 (Integrand modulus). Let 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any
𝑧 with |𝑧| ≤ 𝑟, we have |𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡| = 𝑟′|𝑓(𝑟′𝑒𝑖𝑡)|.
Proof. Apply Lemmas 141 and 148 with 𝑎 = 𝑟′.

Lemma 150 (Square modulus). For any 𝑐 ∈ ℂ, |𝑐2| = |𝑐|2.

Proof.

Lemma 151 (Shifted modulus). For any 𝑤, 𝑧 ∈ ℂ, |(𝑤 − 𝑧)2| = |𝑤 − 𝑧|2.

Proof. Apply Lemma 150 with 𝑐 = 𝑤 − 𝑧.

Lemma 152 (Reverse triangle). For any 𝑤, 𝑧 ∈ ℂ, we have |𝑤| − |𝑧| ≤ |𝑤 − 𝑧|.
Proof.

Lemma 153 (Reverse triangle). Let 𝑡 ∈ ℝ and 0 < 𝑟 < 𝑟′ < 𝑅 and 𝑧 ∈ ℂ, we have |𝑟′𝑒𝑖𝑡|− |𝑧| ≤
|𝑟′𝑒𝑖𝑡 − 𝑧|.
Proof. Apply Lemma 152 with 𝑤 = 𝑟′𝑒𝑖𝑡.

Lemma 154 (Reverse triangle). Let 𝑡 ∈ ℝ and 0 < 𝑟 < 𝑟′ < 𝑅 and 𝑧 ∈ ℂ, we have 𝑟′ − |𝑧| ≤
|𝑟′𝑒𝑖𝑡 − 𝑧|.
Proof. Apply Lemmas 153 and 148 with 𝑎 = 𝑟′

Lemma 155 (Radius relation). Let 0 < 𝑟 < 𝑟′ < 𝑅 and 𝑧 ∈ ℂ with |𝑧| ≤ 𝑟. Then 0 < 𝑟′ − |𝑧|.
Proof. We calculate |𝑧| ≤ 𝑟 < 𝑟′ by assumption, so 0 < 𝑟′ − |𝑧|.
Lemma 156 (Radius relation). Let 𝑡 ∈ ℝ and 0 < 𝑟 < 𝑟′ < 𝑅 and 𝑧 ∈ ℂ and 𝑧 ∈ ℂ with |𝑧| ≤ 𝑟.
Then 𝑟′ − 𝑟 ≤ |𝑟′𝑒𝑖𝑡 − 𝑧|.
Proof. Apply Lemma 154 and |𝑧| ≤ 𝑟.
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Lemma 157 (Radius relation). If 0 < 𝑟 < 𝑟′ then 𝑟′ − 𝑟 > 0
Proof. Calculation

Lemma 158 (Radius relation). If 0 < 𝑟 < 𝑟′ then (𝑟′ − 𝑟)2 > 0
Proof. Apply Lemma 157

Lemma 159 (Radius relation). Let 𝑡 ∈ ℝ and 0 < 𝑟 < 𝑟′ < 𝑅 and 𝑧 ∈ ℂand 𝑧 ∈ ℂ with |𝑧| ≤ 𝑟.
Then (𝑟′ − 𝑟)2 ≤ |𝑟′𝑒𝑖𝑡 − 𝑧|2.

Proof. Apply Lemmas 156 and 158.

Lemma 160 (Radius relation). Let 𝑡 ∈ ℝ and 0 < 𝑟 < 𝑟′ < 𝑅 and 𝑧 ∈ ℂand 𝑧 ∈ ℂ with |𝑧| ≤ 𝑟.
Then |(𝑟′𝑒𝑖𝑡 − 𝑧)2| = |𝑟′𝑒𝑖𝑡 − 𝑧|2.

Proof. Apply Lemmas 156 and 158.

Lemma 161 (Reverse triangle). Let 𝑡 ∈ ℝ and 0 < 𝑟 < 𝑟′ < 𝑅 and 𝑧 ∈ ℂ with |𝑧| ≤ 𝑟, we have
0 < |𝑟′𝑒𝑖𝑡 − 𝑧|.
Proof. Apply Lemmas 154 and 155.

Lemma 162 (Positive nonzero). For 𝑤 ∈ ℂ, if |𝑤| > 0 then 𝑤 ≠ 0.

Proof.

Lemma 163 (Reverse triangle). Let 𝑡 ∈ ℝ and 0 < 𝑟 < 𝑟′ < 𝑅 and 𝑧 ∈ ℂ with |𝑧| ≤ 𝑟, we have
𝑟′𝑒𝑖𝑡 − 𝑧 ≠ 0.

Proof. Apply Lemmas 161 and 162 with 𝑤 = 𝑟′𝑒𝑖𝑡 − 𝑧.

Lemma 164 (Reverse triangle). Let 𝑡 ∈ ℝ and 0 < 𝑟 < 𝑟′ < 𝑅 and 𝑧 ∈ ℂ with |𝑧| ≤ 𝑟, we have
(𝑟′𝑒𝑖𝑡 − 𝑧)2 ≠ 0.

Proof. Apply Lemma 163, and Mathlib mul_self_ne_zero

Lemma 165 (Division bound). If 𝑎, 𝑏 ∈ ℂ and 𝑏 ≠ 0 then |𝑎/𝑏| = |𝑎|/|𝑏|.
Proof.

Lemma 166 (Integrand modulus). Let 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any
𝑧 with |𝑧| ≤ 𝑟, we have ∣ 𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡

(𝑟′𝑒𝑖𝑡−𝑧)2 ∣ = |𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡|
|(𝑟′𝑒𝑖𝑡−𝑧)2| .

Proof. Apply Lemma 165 with 𝑎 = 𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡 and 𝑏 = (𝑟′𝑒𝑖𝑡 − 𝑧)2. Here 𝑏 ≠ 0 by Lemma
164.

Lemma 167 (Product modulus). Let 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any 𝑧
with |𝑧| ≤ 𝑟, we have ∣ 𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡

(𝑟′𝑒𝑖𝑡−𝑧)2 ∣ = 𝑟′|𝑓(𝑟′𝑒𝑖𝑡)|
|(𝑟′𝑒𝑖𝑡−𝑧)2| .

Proof. Apply Lemmas 166 and 149.

Lemma 168 (Product modulus). Let 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any 𝑧
with |𝑧| ≤ 𝑟, we have ∣ 𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡

(𝑟′𝑒𝑖𝑡−𝑧)2 ∣ = 𝑟′|𝑓(𝑟′𝑒𝑖𝑡)|
|𝑟′𝑒𝑖𝑡−𝑧|2 .

Proof. Apply Lemmas 167 and 160.
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Lemma 169 (Product modulus). Let 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any 𝑧
with |𝑧| ≤ 𝑟, we have 𝑟′|𝑓(𝑟′𝑒𝑖𝑡)|

|𝑟′𝑒𝑖𝑡−𝑧|2 ≤ 𝑟′|𝑓(𝑟′𝑒𝑖𝑡)|
(𝑟′−𝑟)2 .

Proof. Apply Lemmas 168 and 159.

Lemma 170 (Product modulus). Let 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any 𝑧
with |𝑧| ≤ 𝑟, we have ∣ 𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡

(𝑟′𝑒𝑖𝑡−𝑧)2 ∣ ≤ 𝑟′|𝑓(𝑟′𝑒𝑖𝑡)|
(𝑟′−𝑟)2 .

Proof. Apply Lemmas 168 and 169.

Lemma 171 (Point bound). Let 𝑀, 𝑅 > 0 and 0 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such
that 𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 𝑡 ∈ ℝ we have |𝑓(𝑟′𝑒𝑖𝑡)| ≤ 2𝑟′𝑀

𝑅−𝑟′ .

Proof. Note 𝑤 = 𝑟′𝑒𝑖𝑡 satisfies |𝑤| = 𝑟′ < 𝑅 by Lemma 148 with 𝑎 = 𝑟′. Then apply Lemma
132.

Lemma 172 (Integrand bound). Let 𝑀, 𝑅 > 0 and 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on
|𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 𝑡 ∈ ℝ we have
∣ 𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡

(𝑟′𝑒𝑖𝑡−𝑧)2 ∣ ≤ 2(𝑟′)2𝑀
(𝑅−𝑟′)(𝑟′−𝑟)2 .

Proof. Apply Lemmas 170 and 171.

Lemma 173 (Integral inequality). If 𝑔(𝑡) ≤ 𝐶 for all 𝑡 ∈ [𝑎, 𝑏], then ∫𝑏
𝑎 𝑔(𝑡)𝑑𝑡 ≤ ∫𝑏

𝑎 𝐶𝑑𝑡.
Proof.

Lemma 174 (Derivative bound). Let 𝑀, 𝑅 > 0 and 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on
|𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 𝑡 ∈ ℝ we have
|𝑓 ′(𝑧)| ≤ 1

2𝜋 ∫2𝜋
0

2(𝑟′)2𝑀
(𝑅−𝑟′)(𝑟′−𝑟)2 𝑑𝑡.

Proof. Apply Lemmas 140, 172 and 173 with 𝑔(𝑡) = ∣ 𝑓(𝑟′𝑒𝑖𝑡)𝑟′𝑒𝑖𝑡

(𝑟′𝑒𝑖𝑡−𝑧)2 ∣ and 𝐶 = 2(𝑟′)2𝑀
(𝑅−𝑟′)(𝑟′−𝑟)2

Lemma 175 (Integrate one). We have ∫2𝜋
0 𝑑𝑡 = 2𝜋.

Proof.

Lemma 176 (Exponential integral). We have 1
2𝜋 ∫2𝜋

0 𝑑𝑡 = 1.

Proof. Apply Lemma 175 and simplify.

Lemma 177 (Derivative bound). Let 𝑀, 𝑅 > 0 and 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic on |𝑧| ≤ 𝑅
such that 𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. Then we have |𝑓 ′(𝑧)| ≤ 2(𝑟′)2𝑀

(𝑅−𝑟′)(𝑟′−𝑟)2 .

Proof. Apply Lemmas 174 and 176.

Lemma 178 (Radius compare). Given 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have 𝑟 < 𝑟′.

Proof. Since 𝑟 < 𝑅, we have 2𝑟 < 𝑟 + 𝑅. Dividing by 2 gives 𝑟 < (𝑟 + 𝑅)/2.

Lemma 179 (Radius compare). Given 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have 𝑟′ < 𝑅.

Proof. Since 𝑟 < 𝑅, we have 𝑟 + 𝑅 < 2𝑅. Dividing by 2 gives (𝑟 + 𝑅)/2 < 𝑅.

Lemma 180 (Intermediate radius). Given 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have 𝑟 < 𝑟′ < 𝑅.
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Proof. Apply Lemmas 178 and 179.

Lemma 181 (Radius formula). Given 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have 𝑅 − 𝑟′ = 𝑅−𝑟

2 .

Proof. We calculate 𝑅 − 𝑟+𝑅
2 = 2𝑅−(𝑟+𝑅)

2 = 𝑅−𝑟
2 .

Lemma 182 (Radius formula). Given 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have 𝑟′ − 𝑟 = 𝑅−𝑟

2 .

Proof. We calculate 𝑟+𝑅
2 − 𝑟 = 𝑟+𝑅−2𝑟

2 = 𝑅−𝑟
2 .

Lemma 183 (Denominator form). Given 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have (𝑅 − 𝑟′)(𝑟′ − 𝑟)2 =

(𝑅−𝑟)3

8 .

Proof. Apply Lemmas 181 and 182 and calculate ( 𝑅−𝑟
2 ) ⋅ ( 𝑅−𝑟

2 )2 = (𝑅−𝑟)
2

(𝑅−𝑟)2

4 = (𝑅−𝑟)3

8 .

Lemma 184 (Numerator form). Given 𝑀 > 0 and 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have

2(𝑟′)2𝑀 = (𝑅+𝑟)2𝑀
2 .

Proof. We calculate 2(𝑟′)2𝑀 = 2 ( 𝑅+𝑟
2 )2 𝑀 = 2 (𝑅+𝑟)2

4 𝑀 = (𝑅+𝑟)2𝑀
2

Lemma 185 (Fraction simplify). Given 𝑀 > 0 and 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have

2(𝑟′)2𝑀
(𝑅−𝑟′)(𝑟′−𝑟)2 = (𝑅+𝑟)2𝑀/2

(𝑅−𝑟)3/8 .

Proof. Apply Lemmas 184 and 183.

Lemma 186 (Fraction simplify). Given 𝑀 > 0 and 0 < 𝑟 < 𝑅, we have (𝑅+𝑟)2𝑀/2
(𝑅−𝑟)3/8 = 4(𝑅+𝑟)2𝑀

(𝑅−𝑟)3 .

Proof. Simplify fraction

Lemma 187 (Fraction simplify). Given 𝑀 > 0 and 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have

2(𝑟′)2𝑀
(𝑅−𝑟′)(𝑟′−𝑟)2 = 4(𝑅+𝑟)2𝑀

(𝑅−𝑟)3 .

Proof. Apply Lemmas 185 and 186.

Lemma 188 (Inequality fact). Given 𝑟 < 𝑅, we have 𝑅 + 𝑟 < 2𝑅.

Proof. calculation

Lemma 189 (Sum positive). Given 0 < 𝑟 < 𝑅, we have 0 < 𝑅 + 𝑟.

Proof.

Lemma 190 (Double positive). Given 0 < 𝑅, we have 2𝑅 > 0.

Proof.

Lemma 191 (Square fact). If 0 < 𝑎 < 𝑏, then 𝑎2 < 𝑏2.

Proof.

Lemma 192 (Square bound). Given e, we have (𝑅 + 𝑟)2 < (2𝑅)2.

Proof. Let 𝑎 = 𝑅 + 𝑟 and 𝑏 = 2𝑅. From Lemma 189, 𝑎 > 0. From Lemma 190, 𝑏 > 0. From
Lemma 188, 𝑎 < 𝑏. Apply Lemma 191.
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Lemma 193 (Square identity). For any 𝑅 > 0, we have (2𝑅)2 = 4𝑅2.

Proof. We calculate (2𝑅)2 = 22𝑅2 = 4𝑅2.

Lemma 194 (Square bound). Given 0 < 𝑟 < 𝑅, we have (𝑅 + 𝑟)2 < 4𝑅2.

Proof. Apply Lemmas 192 and 193.

Lemma 195 (Square bound). Given 𝑀 > 0 and 0 < 𝑟 < 𝑅, we have 4(𝑅 + 𝑟)2𝑀 < 16𝑅2𝑀 .

Proof. Apply Lemma 194 and multiply by 4𝑀 > 0.

Lemma 196 (Bound simplify). Given 𝑀 > 0 and 0 < 𝑟 < 𝑅, we have 4(𝑅+𝑟)2𝑀
(𝑅−𝑟)3 < 16𝑅2𝑀

(𝑅−𝑟)3 .

Proof. Apply Lemma 195 to the numerator of the fraction.

Lemma 197 (Fraction simplify). Given 𝑀 > 0 and 0 < 𝑟 < 𝑅 with 𝑟′ = 𝑟+𝑅
2 , we have

2(𝑟′)2𝑀
(𝑅−𝑟′)(𝑟′−𝑟)2 ≤ 16𝑅2𝑀

(𝑅−𝑟)3 .

Proof. Apply Lemmas 187 and 196.

Theorem 198 (Borel-Carathéodory II). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅 such that
𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. For any 0 < 𝑟 < 𝑅 and any |𝑧| ≤ 𝑟,

|𝑓 ′(𝑧)| ≤ 16𝑀𝑅2

(𝑅 − 𝑟)3 .

Proof. Apply Lemmas 197 and 177 with 𝑟′ = 𝑟+𝑅
2 .

1.3 Integral Antiderivative
Lemma 199 (Cauchy rectangles). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0

→ ℂ analyticOnNhd
𝔻𝑅0

. Then for any 𝑧, 𝑤 ∈ 𝔻𝑅,

(∫
𝑤. Re

𝑧. Re
𝑓(𝑥 + 𝑖 𝑧. Im) 𝑑𝑥) − (∫

𝑤. Re

𝑧. Re
𝑓(𝑥 + 𝑖 𝑤. Im) 𝑑𝑥)

+ 𝑖 (∫
𝑤. Im

𝑧. Im
𝑓(𝑤. Re +𝑖𝑦) 𝑑𝑦) − 𝑖 (∫

𝑤. Im

𝑧. Im
𝑓(𝑧. Re +𝑖𝑦) 𝑑𝑦) = 0.

Proof. Let the four corners of a rectangle be 𝐴 = 𝑧. Re +𝑖 𝑧. Im, 𝐵 = 𝑤. Re +𝑖 𝑧. Im, 𝐶 =
𝑤. Re +𝑖 𝑤. Im, and 𝐷 = 𝑧. Re +𝑖 𝑤. Im. Since 𝑧, 𝑤 ∈ 𝔻𝑅, all four corners lie within the closed
disk 𝔻𝑅0

. The assumption is that 𝑓 is analytic on a neighborhood of 𝔻𝑅0
. This means there

exists an open set 𝑈 containing 𝔻𝑅0
on which 𝑓 is analytic. The rectangle with corners 𝐴, 𝐵, 𝐶, 𝐷

is contained in 𝔻𝑅0
, and therefore also in 𝑈 .

By Cauchy’s Integral Theorem for a rectangle (Mathlib: integral_boundary_rect_eq_zero_of_differentiableOn),
the integral of an analytic function over the boundary of the rectangle is zero. We can express
this boundary integral as the sum of four path integrals:

∮
𝜕Rect

𝑓(𝜁) 𝑑𝜁 = ∫
𝐵

𝐴
𝑓(𝜁) 𝑑𝜁 + ∫

𝐶

𝐵
𝑓(𝜁) 𝑑𝜁 + ∫

𝐷

𝐶
𝑓(𝜁) 𝑑𝜁 + ∫

𝐴

𝐷
𝑓(𝜁) 𝑑𝜁 = 0.

We evaluate each integral:
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1. Path from 𝐴 to 𝐵: 𝜁(𝑥) = 𝑥 + 𝑖 𝑧. Im for 𝑥 from 𝑧. Re to 𝑤. Re. So 𝑑𝜁 = 𝑑𝑥.

∫
𝐵

𝐴
𝑓(𝜁) 𝑑𝜁 = ∫

𝑤. Re

𝑧. Re
𝑓(𝑥 + 𝑖 𝑧. Im) 𝑑𝑥.

2. Path from 𝐵 to 𝐶: 𝜁(𝑦) = 𝑤. Re +𝑖 𝑦 for 𝑦 from 𝑧. Im to 𝑤. Im. So 𝑑𝜁 = 𝑖 𝑑𝑦.

∫
𝐶

𝐵
𝑓(𝜁) 𝑑𝜁 = 𝑖 ∫

𝑤. Im

𝑧. Im
𝑓(𝑤. Re +𝑖𝑦) 𝑑𝑦.

3. Path from 𝐶 to 𝐷: 𝜁(𝑥) = 𝑥 + 𝑖 𝑤. Im for 𝑥 from 𝑤. Re to 𝑧. Re. So 𝑑𝜁 = 𝑑𝑥.

∫
𝐷

𝐶
𝑓(𝜁) 𝑑𝜁 = ∫

𝑧. Re

𝑤. Re
𝑓(𝑥 + 𝑖 𝑤. Im) 𝑑𝑥 = − ∫

𝑤. Re

𝑧. Re
𝑓(𝑥 + 𝑖 𝑤. Im) 𝑑𝑥.

4. Path from 𝐷 to 𝐴: 𝜁(𝑦) = 𝑧. Re +𝑖 𝑦 for 𝑦 from 𝑤. Im to 𝑧. Im. So 𝑑𝜁 = 𝑖 𝑑𝑦.

∫
𝐴

𝐷
𝑓(𝜁) 𝑑𝜁 = 𝑖 ∫

𝑧. Im

𝑤. Im
𝑓(𝑧. Re +𝑖𝑦) 𝑑𝑦 = −𝑖 ∫

𝑤. Im

𝑧. Im
𝑓(𝑧. Re +𝑖𝑦) 𝑑𝑦.

Summing these four integrals gives the equation:

(∫
𝑤. Re

𝑧. Re
𝑓(𝑥 + 𝑖 𝑧. Im) 𝑑𝑥)+𝑖 (∫

𝑤. Im

𝑧. Im
𝑓(𝑤. Re +𝑖𝑦) 𝑑𝑦)−(∫

𝑤. Re

𝑧. Re
𝑓(𝑥 + 𝑖 𝑤. Im) 𝑑𝑥)−𝑖 (∫

𝑤. Im

𝑧. Im
𝑓(𝑧. Re +𝑖𝑦) 𝑑𝑦) = 0.

Rearranging the terms to match the statement of the lemma concludes the proof.

Definition 200 (Integral along the taxicab path). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ

analyticOnNhd 𝔻𝑅0
. Define the function 𝐼𝑓 ∶ 𝔻𝑅 → ℂ by

𝐼𝑓(𝑧) ∶= ∫
𝑧. Re

0
𝑓(𝑡) 𝑑𝑡 + 𝑖 ∫

𝑧. Im

0
𝑓(𝑧. Re +𝑖𝜏) 𝑑𝜏.

Lemma 201 (Integral form). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd

𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅 and ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅. Then

𝐼𝑓(𝑧 + ℎ) = ∫
(𝑧+ℎ). Re

0
𝑓(𝑡) 𝑑𝑡 + 𝑖 ∫

(𝑧+ℎ). Im

0
𝑓((𝑧 + ℎ). Re +𝑖𝜏) 𝑑𝜏.

Proof. Apply theorem 200 with 𝑧 + ℎ.

Lemma 202 (Integral form). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd

𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅. Then

𝐼𝑓(𝑧) = ∫
𝑧. Re

0
𝑓(𝑡) 𝑑𝑡 + 𝑖 ∫

𝑧. Im

0
𝑓(𝑧. Re +𝑖𝜏) 𝑑𝜏.

Proof. Apply theorem 200 with 𝑧
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Lemma 203 (Integral form). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd

𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅, ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅, and let 𝑤 = (𝑧 + ℎ). Re +𝑖 𝑧. Im. Then

𝐼𝑓(𝑤) = ∫
(𝑧+ℎ). Re

0
𝑓(𝑡) 𝑑𝑡 + 𝑖 ∫

𝑧. Im

0
𝑓((𝑧 + ℎ). Re +𝑖𝜏) 𝑑𝜏.

Proof. Apply theorem 200 with 𝑤, noting that 𝑤. Re = (𝑧 + ℎ). Re and 𝑤. Im = 𝑧. Im.

Lemma 204 (Difference form). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd

𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅, ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅, and let 𝑤 = (𝑧 + ℎ). Re +𝑖 𝑧. Im. Then

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑤) = 𝑖 ∫
(𝑧+ℎ). Im

𝑧. Im
𝑓((𝑧 + ℎ). Re +𝑖𝜏) 𝑑𝜏.

Proof. Take the difference of theorem 201 and theorem 203, noting the terms involving ∫ 𝑓(𝑡) 𝑑𝑡
cancel. The remaining terms are combined using properties of integrals.

Lemma 205 (Initial form). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd 𝔻𝑅0

.
Let 𝑧 ∈ 𝔻𝑅, ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅, and let 𝑤 = (𝑧 + ℎ). Re +𝑖 𝑧. Im. Then

𝐼𝑓(𝑤) − 𝐼𝑓(𝑧) = ∫
𝑤. Re

𝑧. Re
𝑓(𝑡) 𝑑𝑡 + 𝑖 ∫

𝑧. Im

0
[𝑓(𝑤. Re +𝑖𝜏) − 𝑓(𝑧. Re +𝑖𝜏)] 𝑑𝜏.

Proof. Apply theorem 203 and theorem 202, note that 𝑤. Im = 𝑧. Im, and combine integrals.

Lemma 206 (Horizontal strip). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd

𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅, ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅, and let 𝑤 = (𝑧 + ℎ). Re +𝑖 𝑧. Im. Then

∫
𝑤. Re

𝑧. Re
𝑓(𝑡)𝑑𝑡 − ∫

𝑤. Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im)𝑑𝑡 + 𝑖 ∫

𝑧. Im

0
𝑓(𝑤. Re +𝑖𝜏)𝑑𝜏 − 𝑖 ∫

𝑧. Im

0
𝑓(𝑧. Re +𝑖𝜏)𝑑𝜏 = 0.

Proof. Apply theorem 199 with the points 𝑧′ ∶= 𝑧. Re and 𝑤′ ∶= (𝑧 + ℎ). Re +𝑖 𝑧. Im. The four
corners of the rectangle are 𝑧. Re, (𝑧+ℎ). Re, (𝑧+ℎ). Re +𝑖 𝑧. Im, and 𝑧. Re +𝑖 𝑧. Im. Substituting
𝑧′ and 𝑤′ into the formula from theorem 199 yields the desired identity.

Lemma 207 (Rearrangement step). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ ana-

lyticOnNhd 𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅, ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅, and let 𝑤 = (𝑧 + ℎ). Re +𝑖 𝑧. Im.

Then

𝑖 ∫
𝑧. Im

0
[𝑓(𝑤. Re +𝑖𝜏) − 𝑓(𝑧. Re +𝑖𝜏)] 𝑑𝜏 = ∫

𝑤. Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im) 𝑑𝑡 − ∫

𝑤. Re

𝑧. Re
𝑓(𝑡) 𝑑𝑡.

Proof. We start with the identity from theorem 206. The assumptions are: 0 < 𝑅 < 𝑅0 < 1,
𝑓 ∶ 𝔻𝑅0

→ ℂ is analytic on a neighborhood of 𝔻𝑅0
, 𝑧 ∈ 𝔻𝑅, ℎ ∈ ℂ with 𝑧 + ℎ ∈ 𝔻𝑅, and

𝑤 = (𝑧 + ℎ). Re +𝑖 𝑧. Im. The identity is:

∫
𝑤. Re

𝑧. Re
𝑓(𝑡)𝑑𝑡 − ∫

𝑤. Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im)𝑑𝑡 + 𝑖 ∫

𝑧. Im

0
𝑓(𝑤. Re +𝑖𝜏)𝑑𝜏 − 𝑖 ∫

𝑧. Im

0
𝑓(𝑧. Re +𝑖𝜏)𝑑𝜏 = 0.
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By the linearity of integration, we can combine the last two terms:

𝑖 ∫
𝑧. Im

0
𝑓(𝑤. Re +𝑖𝜏)𝑑𝜏−𝑖 ∫

𝑧. Im

0
𝑓(𝑧. Re +𝑖𝜏)𝑑𝜏 = 𝑖 (∫

𝑧. Im

0
𝑓(𝑤. Re +𝑖𝜏)𝑑𝜏 − ∫

𝑧. Im

0
𝑓(𝑧. Re +𝑖𝜏)𝑑𝜏) = 𝑖 ∫

𝑧. Im

0
[𝑓(𝑤. Re +𝑖𝜏)−𝑓(𝑧. Re +𝑖𝜏)] 𝑑𝜏.

Substituting this back into the identity gives:

∫
𝑤. Re

𝑧. Re
𝑓(𝑡)𝑑𝑡 − ∫

𝑤. Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im)𝑑𝑡 + 𝑖 ∫

𝑧. Im

0
[𝑓(𝑤. Re +𝑖𝜏) − 𝑓(𝑧. Re +𝑖𝜏)] 𝑑𝜏 = 0.

To obtain the desired result, we isolate the term involving the integral over 𝜏 by moving the
other two integral terms to the right-hand side of the equation:

𝑖 ∫
𝑧. Im

0
[𝑓(𝑤. Re +𝑖𝜏) − 𝑓(𝑧. Re +𝑖𝜏)] 𝑑𝜏 = ∫

𝑤. Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im) 𝑑𝑡 − ∫

𝑤. Re

𝑧. Re
𝑓(𝑡) 𝑑𝑡.

This completes the proof.

Lemma 208 (Shift integral). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd

𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅, ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅, and let 𝑤 = (𝑧 + ℎ). Re +𝑖 𝑧. Im. Then

𝐼𝑓(𝑤) − 𝐼𝑓(𝑧) = ∫
(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im) 𝑑𝑡.

Proof. The assumptions are: 0 < 𝑅 < 𝑅0 < 1, 𝑓 ∶ 𝔻𝑅0
→ ℂ is analytic on a neighborhood of

𝔻𝑅0
, 𝑧 ∈ 𝔻𝑅, ℎ ∈ ℂ with 𝑧 + ℎ ∈ 𝔻𝑅, and 𝑤 = (𝑧 + ℎ). Re +𝑖 𝑧. Im. From theorem 205, we have

the expression:

𝐼𝑓(𝑤) − 𝐼𝑓(𝑧) = ∫
𝑤. Re

𝑧. Re
𝑓(𝑡) 𝑑𝑡 + 𝑖 ∫

𝑧. Im

0
[𝑓(𝑤. Re +𝑖𝜏) − 𝑓(𝑧. Re +𝑖𝜏)] 𝑑𝜏.

From theorem 207, we have an identity for the second term in the expression above:

𝑖 ∫
𝑧. Im

0
[𝑓(𝑤. Re +𝑖𝜏) − 𝑓(𝑧. Re +𝑖𝜏)] 𝑑𝜏 = ∫

𝑤. Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im) 𝑑𝑡 − ∫

𝑤. Re

𝑧. Re
𝑓(𝑡) 𝑑𝑡.

We substitute this identity into the expression for 𝐼𝑓(𝑤) − 𝐼𝑓(𝑧):

𝐼𝑓(𝑤) − 𝐼𝑓(𝑧) = ∫
𝑤. Re

𝑧. Re
𝑓(𝑡) 𝑑𝑡 + (∫

𝑤. Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im) 𝑑𝑡 − ∫

𝑤. Re

𝑧. Re
𝑓(𝑡) 𝑑𝑡) .

The terms ∫𝑤. Re
𝑧. Re 𝑓(𝑡) 𝑑𝑡 and − ∫𝑤. Re

𝑧. Re 𝑓(𝑡) 𝑑𝑡 cancel each other out.

𝐼𝑓(𝑤) − 𝐼𝑓(𝑧) = ∫
𝑤. Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im) 𝑑𝑡.

Finally, we use the definition of 𝑤, which states 𝑤. Re = (𝑧 + ℎ). Re. Substituting this into the
upper limit of the integral gives the final result:

𝐼𝑓(𝑤) − 𝐼𝑓(𝑧) = ∫
(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im) 𝑑𝑡.
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Lemma 209 (L path). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd 𝔻𝑅0

. Let
𝑧 ∈ 𝔻𝑅 and ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅. Then

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧) = ∫
(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑡 + 𝑖 𝑧. Im) 𝑑𝑡 + 𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
𝑓((𝑧 + ℎ). Re +𝑖𝜏) 𝑑𝜏.

Proof. The result follows by summing the identities from theorem 208 and theorem 204, using
the identity 𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧) = (𝐼𝑓(𝑤) − 𝐼𝑓(𝑧)) + (𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑤)).

Lemma 210 (Add-sub step). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd

𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅 and ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅. Then

𝐼𝑓(𝑧+ℎ)−𝐼𝑓(𝑧) = ∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡+𝑖 𝑧. Im)−𝑓(𝑧)+𝑓(𝑧)) 𝑑𝑡+𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧+ℎ). Re +𝑖𝜏)−𝑓(𝑧)+𝑓(𝑧)) 𝑑𝜏.

Proof. The identity follows by starting with the expression for 𝐼𝑓(𝑧+ℎ)−𝐼𝑓(𝑧) from theorem 209
and adding and subtracting the term 𝑓(𝑧) within each integrand, which is an algebraic identity.

Lemma 211 (Linearity split). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyticOnNhd

𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅 and ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅. Then

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧) = (∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)) 𝑑𝑡 + ∫

(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑧) 𝑑𝑡)

+ 𝑖 (∫
(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) 𝑑𝜏 + ∫

(𝑧+ℎ). Im

𝑧. Im
𝑓(𝑧) 𝑑𝜏) .

Proof. We begin with the identity from theorem 210, which holds under the assumptions that
0 < 𝑅 < 𝑅0 < 1, 𝑓 is analytic on a neighborhood of 𝔻𝑅0

, 𝑧 ∈ 𝔻𝑅, and ℎ ∈ ℂ with 𝑧 + ℎ ∈ 𝔻𝑅:

𝐼𝑓(𝑧+ℎ)−𝐼𝑓(𝑧) = ∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡+𝑖 𝑧. Im)−𝑓(𝑧)+𝑓(𝑧)) 𝑑𝑡+𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧+ℎ). Re +𝑖𝜏)−𝑓(𝑧)+𝑓(𝑧)) 𝑑𝜏.

We apply the linearity property of the integral, ∫(𝑔+𝑘) = ∫ 𝑔+∫ 𝑘, to each of the two integrals on
the right-hand side. For the first integral, we group the integrand as (𝑓(𝑡+𝑖 𝑧. Im)−𝑓(𝑧))+𝑓(𝑧).
Applying linearity yields:

∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡+𝑖 𝑧. Im)−𝑓(𝑧)+𝑓(𝑧)) 𝑑𝑡 = ∫

(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡+𝑖 𝑧. Im)−𝑓(𝑧)) 𝑑𝑡+∫

(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑧) 𝑑𝑡.

For the second integral, we group the integrand as (𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) + 𝑓(𝑧). Applying
linearity yields:

∫
(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧+ℎ). Re +𝑖𝜏)−𝑓(𝑧)+𝑓(𝑧)) 𝑑𝜏 = ∫

(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧+ℎ). Re +𝑖𝜏)−𝑓(𝑧)) 𝑑𝜏+∫

(𝑧+ℎ). Im

𝑧. Im
𝑓(𝑧) 𝑑𝜏.
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Substituting these expanded forms back into the original equation for 𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧), and
distributing the factor of 𝑖 for the second part, we obtain the desired result:

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧) = (∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)) 𝑑𝑡 + ∫

(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑧) 𝑑𝑡)

+ 𝑖 (∫
(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) 𝑑𝜏 + ∫

(𝑧+ℎ). Im

𝑧. Im
𝑓(𝑧) 𝑑𝜏) .

Lemma 212 (Integral of constant over L-path). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ

analyticOnNhd 𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅 and ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅. Then

∫
(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑧) 𝑑𝑡 + 𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
𝑓(𝑧) 𝑑𝜏 = 𝑓(𝑧) ⋅ ℎ.

Proof. The left side is the integral of the constant function 𝑤 ↦ 𝑓(𝑧) over the L-shaped path.
Thus we calculate

∫
(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑧) 𝑑𝑡 + 𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
𝑓(𝑧) 𝑑𝜏 = 𝑓(𝑧) ⋅ ((𝑧 + ℎ). Re −𝑧. Re) + 𝑖 ⋅ 𝑓(𝑧) ⋅ ((𝑧 + ℎ). Im −𝑧. Im)

= 𝑓(𝑧) ⋅ (ℎ. Re +𝑖 ⋅ ℎ. Im) = 𝑓(𝑧) ⋅ ℎ.

Lemma 213 (Difference decomposition). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ

analyticOnNhd 𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅 and ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅. Then

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧) = ℎ ⋅ 𝑓(𝑧) + Err(𝑧, ℎ),

where Err(𝑧, ℎ) is defined as

Err(𝑧, ℎ) ∶= ∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)) 𝑑𝑡 + 𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) 𝑑𝜏.

Proof. We start with the expression for 𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧) from theorem 211. The assumptions
are that 𝑓 is analytic on a neighborhood of 𝔻𝑅0

, 𝑧 ∈ 𝔻𝑅, and ℎ ∈ ℂ such that 𝑧 + ℎ ∈ 𝔻𝑅.

𝐼𝑓(𝑧+ℎ)−𝐼𝑓(𝑧) = (∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)) 𝑑𝑡 + ∫

(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑧) 𝑑𝑡)+𝑖 (∫

(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) 𝑑𝜏 + ∫

(𝑧+ℎ). Im

𝑧. Im
𝑓(𝑧) 𝑑𝜏) .

We can rearrange the terms by grouping them differently:

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧) = (∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)) 𝑑𝑡 + 𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) 𝑑𝜏)

+ (∫
(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑧) 𝑑𝑡 + 𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
𝑓(𝑧) 𝑑𝜏) .
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The first large grouped term is precisely the definition of Err(𝑧, ℎ) given in the lemma statement.
The second large grouped term is an expression that is evaluated in theorem 212. According to
that lemma,

∫
(𝑧+ℎ). Re

𝑧. Re
𝑓(𝑧) 𝑑𝑡 + 𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
𝑓(𝑧) 𝑑𝜏 = 𝑓(𝑧) ⋅ ℎ.

Substituting these two results back into our rearranged equation, we get:

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧) = Err(𝑧, ℎ) + 𝑓(𝑧) ⋅ ℎ.
Swapping the terms on the right-hand side gives the final statement.

Lemma 214 (Bound on error term). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ analyti-

cOnNhd 𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅 and ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅 and 𝑧 − ℎ ∈ 𝔻𝑅. Let

𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ) ∶= sup
𝑧. Re −|ℎ. Re |≤𝑡≤𝑧. Re +|ℎ. Re |

|𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)|

𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ) ∶= sup
𝑧. Im −|ℎ. Im |≤𝜏≤𝑧. Im +|ℎ. Im |

|𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)|.

𝑆(𝑧, ℎ) ∶= max(𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ), 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ))
Then the error term Err(𝑧, ℎ) is bounded by:

|Err(𝑧, ℎ)| ≤ |ℎ. Re |𝑆(𝑧, ℎ) + |ℎ. Im |𝑆(𝑧, ℎ).
Proof. We begin with the definition of Err(𝑧, ℎ) from theorem 213.

Err(𝑧, ℎ) = ∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)) 𝑑𝑡 + 𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) 𝑑𝜏.

We take the modulus and apply the triangle inequality, |𝐴 + 𝐵| ≤ |𝐴| + |𝐵|:

|Err(𝑧, ℎ)| ≤ ∣∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)) 𝑑𝑡∣ + ∣𝑖 ∫

(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) 𝑑𝜏∣ .

Since |𝑖| = 1, the second term simplifies to ∣∫(𝑧+ℎ). Im
𝑧. Im (𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) 𝑑𝜏∣. Now we

apply the ML-inequality (| ∫𝛾 𝑔(𝜁)𝑑𝜁| ≤ length(𝛾) ⋅ sup𝜁∈𝛾 |𝑔(𝜁)|) to each integral.
For the first integral, the path of integration is the line segment from 𝑧. Re to (𝑧+ℎ). Re. The

length of this path is |(𝑧 +ℎ). Re −𝑧. Re | = |ℎ. Re |. The supremum of the integrand’s modulus is
taken over this path. The integration variable 𝑡 is in the interval between 𝑧. Re and 𝑧. Re +ℎ. Re.
This interval is contained within [𝑧. Re −|ℎ. Re |, 𝑧. Re +|ℎ. Re |]. Therefore, the supremum over
the integration path is less than or equal to the supremum over this larger interval, which is
𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ).

∣∫
(𝑧+ℎ). Re

𝑧. Re
(𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)) 𝑑𝑡∣ ≤ |ℎ. Re |⋅ sup

𝑡 between 𝑧. Re,(𝑧+ℎ). Re
|𝑓(𝑡+𝑖 𝑧. Im)−𝑓(𝑧)| ≤ |ℎ. Re |⋅𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ).

For the second integral, the path is from 𝑧. Im to (𝑧 + ℎ). Im, with length |(𝑧 + ℎ). Im −𝑧. Im | =
|ℎ. Im |. Similarly, the supremum of its integrand’s modulus is bounded by 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ).

∣∫
(𝑧+ℎ). Im

𝑧. Im
(𝑓((𝑧 + ℎ). Re +𝑖𝜏) − 𝑓(𝑧)) 𝑑𝜏∣ ≤ |ℎ. Im | ⋅ 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ).
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Combining these inequalities, we get:

|Err(𝑧, ℎ)| ≤ |ℎ. Re |𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ) + |ℎ. Im |𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ).

By definition, 𝑆(𝑧, ℎ) = max(𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ), 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ)). Thus, 𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ) ≤ 𝑆(𝑧, ℎ) and 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ) ≤
𝑆(𝑧, ℎ). Substituting these into the inequality gives:

|Err(𝑧, ℎ)| ≤ |ℎ. Re |𝑆(𝑧, ℎ) + |ℎ. Im |𝑆(𝑧, ℎ).

This is the desired result.

Lemma 215 (Bound on error term ratio). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ

analyticOnNhd 𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅 and ℎ ∈ ℂ satisfy 𝑧 + ℎ ∈ 𝔻𝑅 and 𝑧 − ℎ ∈ 𝔻𝑅. Let 𝑆(𝑧, ℎ) be

defined as in theorem 214. If ℎ ≠ 0 then

∣Err(𝑧, ℎ)
ℎ ∣ ≤ 2𝑆(𝑧, ℎ).

Proof. We start with the inequality from theorem 214, which holds under the given assumptions.

|Err(𝑧, ℎ)| ≤ |ℎ. Re |𝑆(𝑧, ℎ) + |ℎ. Im |𝑆(𝑧, ℎ) = (|ℎ. Re | + |ℎ. Im |)𝑆(𝑧, ℎ).

The lemma includes the explicit assumption that ℎ ≠ 0, which implies |ℎ| > 0. We can therefore
divide the inequality by |ℎ| without changing the direction of the inequality.

|Err(𝑧, ℎ)|
|ℎ| ≤ |ℎ. Re | + |ℎ. Im |

|ℎ| 𝑆(𝑧, ℎ).

Using the property that | 𝐴
𝐵 | = |𝐴|

|𝐵| for complex numbers, the left side is equal to ∣ Err(𝑧,ℎ)
ℎ ∣. For

any complex number ℎ = ℎ. Re +𝑖ℎ. Im, we know that |ℎ. Re | ≤ √(ℎ. Re)2 + (ℎ. Im)2 = |ℎ|
and |ℎ. Im | ≤ √(ℎ. Re)2 + (ℎ. Im)2 = |ℎ|. Therefore, the sum is bounded: |ℎ. Re | + |ℎ. Im | ≤
|ℎ| + |ℎ| = 2|ℎ|. This gives us a bound for the fraction:

|ℎ. Re | + |ℎ. Im |
|ℎ| ≤ 2|ℎ|

|ℎ| = 2.

Substituting this bound back into our main inequality, we get:

∣Err(𝑧, ℎ)
ℎ ∣ ≤ 2𝑆(𝑧, ℎ).

This completes the proof.

Lemma 216 (Limit of 𝑆(𝑧, ℎ) is zero). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ

analyticOnNhd 𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅. Then with 𝑆(𝑧, ℎ) defined as in theorem 214, we have

lim
ℎ→0

𝑆(𝑧, ℎ) = 0.

Proof. The assumption that 𝑓 is analytic on a neighborhood of 𝔻𝑅0
implies that 𝑓 is continuous

at every point in 𝔻𝑅0
. In particular, 𝑓 is continuous at 𝑧 ∈ 𝔻𝑅. By the definition of continuity

at 𝑧, for any 𝜖 > 0, there exists a 𝛿 > 0 such that for any point 𝑤 satisfying |𝑤 − 𝑧| < 𝛿, we have
|𝑓(𝑤) − 𝑓(𝑧)| < 𝜖.
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We want to show that limℎ→0 𝑆(𝑧, ℎ) = 0. By definition, 𝑆(𝑧, ℎ) = max(𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ), 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ)).
The limit will be zero if we can show that both 𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ) and 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ) tend to zero.

1. Analysis of 𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ): 𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ) = sup𝑡∈[𝑧. Re −|ℎ. Re |,𝑧. Re +|ℎ. Re |] |𝑓(𝑡 + 𝑖 𝑧. Im) − 𝑓(𝑧)|.
Let 𝑤𝑡 = 𝑡 + 𝑖 𝑧. Im be a point on the horizontal segment. We need to bound |𝑤𝑡 − 𝑧|. |𝑤𝑡 − 𝑧| =
|(𝑡+𝑖 𝑧. Im)−(𝑧. Re +𝑖 𝑧. Im)| = |𝑡−𝑧. Re |. The supremum is over 𝑡 such that |𝑡−𝑧. Re | ≤ |ℎ. Re |.
Since |ℎ. Re | ≤ |ℎ|, we have |𝑤𝑡 − 𝑧| ≤ |ℎ|. If we choose |ℎ| < 𝛿, then for all 𝑡 in the interval,
|𝑤𝑡 −𝑧| < 𝛿. By the continuity of 𝑓 , this implies |𝑓(𝑤𝑡)−𝑓(𝑧)| < 𝜖. Since this is true for all values
in the set, their supremum must be less than or equal to 𝜖. Thus, for |ℎ| < 𝛿, 𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ) ≤ 𝜖.

2. Analysis of 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ): 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ) = sup𝜏∈[𝑧. Im −|ℎ. Im |,𝑧. Im +|ℎ. Im |] |𝑓((𝑧 + ℎ). Re +𝑖𝜏) −
𝑓(𝑧)|. Let 𝑤𝜏 = (𝑧 + ℎ). Re +𝑖𝜏 = (𝑧. Re +ℎ. Re) + 𝑖𝜏 be a point on the vertical segment. We
bound |𝑤𝜏 −𝑧|. |𝑤𝜏 −𝑧| = |(𝑧. Re +ℎ. Re +𝑖𝜏)−(𝑧. Re +𝑖𝑧. Im)| = |ℎ. Re +𝑖(𝜏 −𝑧. Im)|. Using the
triangle inequality, |𝑤𝜏 −𝑧| ≤ |ℎ. Re |+|𝑖(𝜏 −𝑧. Im)| = |ℎ. Re |+|𝜏 −𝑧. Im |. The supremum is over
𝜏 such that |𝜏 −𝑧. Im | ≤ |ℎ. Im |. So, |𝑤𝜏 −𝑧| ≤ |ℎ. Re |+|ℎ. Im |. We know |ℎ. Re |+|ℎ. Im | ≤ 2|ℎ|.
If we choose |ℎ| < 𝛿/2, then |𝑤𝜏 − 𝑧| ≤ 2|ℎ| < 𝛿. By continuity, |𝑓(𝑤𝜏) − 𝑓(𝑧)| < 𝜖. Thus, for
|ℎ| < 𝛿/2, 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ) ≤ 𝜖.

Given 𝜖 > 0, we can choose 𝛿′ = 𝛿/2. Then for any ℎ with |ℎ| < 𝛿′, both 𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ) ≤ 𝜖
and 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ) ≤ 𝜖. Therefore, 𝑆(𝑧, ℎ) = max(𝑆ℎ𝑜𝑟𝑖𝑧(𝑧, ℎ), 𝑆𝑣𝑒𝑟𝑡(𝑧, ℎ)) ≤ 𝜖 for all |ℎ| < 𝛿′. This
satisfies the definition of the limit, so limℎ→0 𝑆(𝑧, ℎ) = 0.

Lemma 217 (Limit of error term ratio is zero). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ

analyticOnNhd 𝔻𝑅0
. Let 𝑧 ∈ 𝔻𝑅. Then

lim
ℎ→0

Err(𝑧, ℎ)
ℎ = 0.

Proof. To prove the limit, we will use the Squeeze Theorem. The limit is taken as ℎ → 0, so we
consider ℎ ≠ 0. From theorem 215, we have the inequality for the modulus of the error term
ratio:

∣Err(𝑧, ℎ)
ℎ ∣ ≤ 2𝑆(𝑧, ℎ).

The modulus of any complex number is non-negative, so we can write:

0 ≤ ∣Err(𝑧, ℎ)
ℎ ∣ ≤ 2𝑆(𝑧, ℎ).

Now, we take the limit of all parts of the inequality as ℎ → 0. The lower bound is constant, so
limℎ→0 0 = 0. For the upper bound, we use theorem 216, which states that limℎ→0 𝑆(𝑧, ℎ) = 0.
Therefore, limℎ→0 2𝑆(𝑧, ℎ) = 2 ⋅ (limℎ→0 𝑆(𝑧, ℎ)) = 2 ⋅ 0 = 0. Since ∣ Err(𝑧,ℎ)

ℎ ∣ is squeezed
between two functions that both tend to 0 as ℎ → 0, the Squeeze Theorem (Mathlib: Fil-
ter.Tendsto.squeeze’) implies that the limit of the modulus is also 0:

lim
ℎ→0

∣Err(𝑧, ℎ)
ℎ ∣ = 0.

A sequence of complex numbers converges to 0 if and only if the sequence of their moduli
converges to 0. Therefore, we can conclude that:

lim
ℎ→0

Err(𝑧, ℎ)
ℎ = 0.
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Lemma 218 (Differentiability of 𝐼𝑓(𝑧)). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝑓 ∶ 𝔻𝑅0
→ ℂ

analyticOnNhd 𝔻𝑅0
. The function 𝐼𝑓(𝑧) is analyticOnNhd 𝔻𝑅, and 𝐼′

𝑓(𝑧) = 𝑓(𝑧) on 𝔻𝑅.

Proof. To show that 𝐼𝑓(𝑧) is differentiable at a point 𝑧 ∈ 𝔻𝑅 and that its derivative is 𝑓(𝑧), we
must show that the following limit exists and equals 𝑓(𝑧):

𝐼′
𝑓(𝑧) = lim

ℎ→0

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧)
ℎ .

We use the decomposition from theorem 213, which states:

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧) = ℎ ⋅ 𝑓(𝑧) + Err(𝑧, ℎ).

For ℎ ≠ 0, we can form the difference quotient by dividing by ℎ:

𝐼𝑓(𝑧 + ℎ) − 𝐼𝑓(𝑧)
ℎ = ℎ ⋅ 𝑓(𝑧) + Err(𝑧, ℎ)

ℎ = 𝑓(𝑧) + Err(𝑧, ℎ)
ℎ .

Now, we take the limit as ℎ → 0:

𝐼′
𝑓(𝑧) = lim

ℎ→0
(𝑓(𝑧) + Err(𝑧, ℎ)

ℎ ) .

Using the property that the limit of a sum is the sum of the limits:

𝐼′
𝑓(𝑧) = lim

ℎ→0
𝑓(𝑧) + lim

ℎ→0
Err(𝑧, ℎ)

ℎ .

The term 𝑓(𝑧) is constant with respect to ℎ, so its limit is 𝑓(𝑧). From theorem 217, we know
that limℎ→0

Err(𝑧,ℎ)
ℎ = 0. Substituting these results back, we find:

𝐼′
𝑓(𝑧) = 𝑓(𝑧) + 0 = 𝑓(𝑧).

This shows that for any 𝑧 ∈ 𝔻𝑅, the derivative 𝐼′
𝑓(𝑧) exists and is equal to 𝑓(𝑧). Since 𝑓 is

analytic on a neighborhood of 𝔻𝑅0
, it is continuous on that neighborhood. This means 𝐼′

𝑓(𝑧) =
𝑓(𝑧) is continuous on 𝔻𝑅. A function with a continuous derivative is analytic. To show it is
‘analyticOnNhd‘ 𝔻𝑅, we note that since 𝑅 < 𝑅0, we can choose an 𝑅′ such that 𝑅 < 𝑅′ < 𝑅0.
The entire construction and proof holds for any 𝑧 ∈ 𝔻𝑅′ . This shows that 𝐼𝑓 is differentiable
in the open disk 𝔻𝑅′ , which is an open neighborhood of 𝔻𝑅. Therefore, 𝐼𝑓 is analytic on a
neighborhood of 𝔻𝑅.

1.4 Complex logarithm
Lemma 219 (Logarithmic derivative is analytic). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝐵 ∶ 𝔻𝑅0

→
ℂ is analyticOnNhd 𝔻𝑅0

and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0
. Then the function 𝐵′(𝑧)/𝐵(𝑧) is

analyticOnNhd 𝔻𝑅0
.

Proof. Mathlib: AnalyticOnNhd.div

Lemma 220 (Antiderivative of logarithmic derivative). Let 0 < 𝑅 < 𝑅0 < 1, and assume
𝐵 ∶ 𝔻𝑅0

→ ℂ is analyticOnNhd 𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Then there exists 𝐽 ∶ 𝔻𝑅 → ℂ
analyticOnNhd 𝔻𝑅, such that 𝐽(0) = 0 and 𝐽 ′(𝑧) = 𝐵′(𝑧)/𝐵(𝑧) for all 𝑧 ∈ 𝔻𝑅.
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Proof. Take 𝐽 = 𝐼𝐵′/𝐵 from theorem 218. Here 𝐵/𝐵′ is analyticOnNhd 𝔻𝑅0
by theorem 219.

Definition 221 (Auxiliary function). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is

analyticOnNhd 𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Define 𝐽(𝑧) ∶= 𝐼𝐵′/𝐵(𝑧) from theorem 220.
Define 𝐻(𝑧) ∶= exp(𝐽(𝑧))/𝐵(𝑧).
Lemma 222 (Exponential of 𝐼𝑓 at zero). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝐵 ∶ 𝔻𝑅0

→ ℂ
is analyticOnNhd 𝔻𝑅0

and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0
. Let 𝐽 be from theorem 220. Then

exp(𝐽(0)) = 1.

Proof. By theorem 220, we have 𝐽(0) = 0. Then 𝑒0 = 1 by Mathlib: Complex.exp_zero.

Lemma 223 (Value of 𝐻 at zero). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is analyticOnNhd

𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐻 be the function from theorem 221. Then 𝐻(0) = 1/𝐵(0).
Proof. By theorem 221 at 𝑧 = 0, 𝐻(0) = exp(𝐽(0))/𝐵(0). Then apply theorem 222.

Lemma 224 (Logarithmic derivative identity). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝐵 ∶ 𝔻𝑅0
→ ℂ

is analyticOnNhd 𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. For 𝐽 from theorem 220, then 𝐽 ′(𝑧)𝐵(𝑧) =
𝐵′(𝑧) for all 𝑧 ∈ 𝔻𝑅.

Proof. Apply theorem 220. Since 𝐵(𝑧) ≠ 0, multiply by 𝐵(𝑧).
Lemma 225 (Logarithmic derivative identity). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝐵 ∶ 𝔻𝑅0

→ ℂ
is analyticOnNhd 𝔻𝑅0

and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0
. For 𝐽 from theorem 220, then 𝐽 ′(𝑧)𝐵(𝑧) −

𝐵′(𝑧) = 0 for all 𝑧 ∈ 𝔻𝑅.

Proof. By theorem 224.

Lemma 226 (Derivative of 𝐻(𝑧)). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is analyticOnNhd

𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐽 and 𝐻 be the functions from theorem 221. The
derivative of 𝐻(𝑧) is given by

𝐻′(𝑧) = (exp(𝐽(𝑧)))′ ⋅ 𝐵(𝑧) − 𝐵′(𝑧) ⋅ exp(𝐽(𝑧))
𝐵(𝑧)2 .

Proof. Apply Mathlib: deriv_div to 𝐻(𝑧) = exp(𝐽(𝑧))/𝐵(𝑧). 𝐵(𝑧) ≠ 0 by assumption.

Lemma 227 (Derivative of exp(𝐽(𝑧))). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is

analyticOnNhd 𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. For 𝐽 from theorem 220, then

(exp(𝐽(𝑧)))′ = 𝐽 ′(𝑧) ⋅ exp(𝐽(𝑧)).

Proof. Apply Mathlib: deriv.scomp_of_eq and AnalyticAt.differentiableAt to the composition
exp ∘𝐼 . Here 𝐽 analyticOnNhd 𝔻𝑅 by theorem 220.

Lemma 228 (Derivative of 𝐻(𝑧)). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is analyticOnNhd

𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐽 and 𝐻 be the functions from theorem 221. The
derivative of 𝐻(𝑧) is given by

𝐻′(𝑧) = (𝐽 ′(𝑧)𝐵(𝑧) − 𝐵′(𝑧)) exp(𝐽(𝑧))
𝐵(𝑧)2 .
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Proof. By theorems 226 and 227.

Lemma 229 (Derivative of 𝐻(𝑧) is 0). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is

analyticOnNhd 𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐽 and 𝐻 be the functions from theorem 221.
Then 𝐻′(𝑧) = 0 for all 𝑧 ∈ 𝔻𝑅.

Proof. Apply theorems 225 and 228.

Lemma 230 (𝐻(𝑧) is constant). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is analyticOnNhd

𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐻 be from theorem 221. Then 𝐻(𝑧) = 𝐻(0) for all
𝑧 ∈ 𝔻𝑅.

Proof. Apply Mathlib: is_const_of_fderiv_eq_zero to theorem 229 with 𝐻(𝑧) on the connected
set 𝔻𝑅.

Lemma 231 (𝐻 = 1). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is analyticOnNhd 𝔻𝑅0

,
𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐻 be the function from theorem 221. Then 𝐻(𝑧) = 1/𝐵(0) for all
𝑧 ∈ 𝔻𝑅.

Proof. Apply theorems 223 and 230.

Lemma 232 (Existence of analytic logarithm). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝐵 ∶ 𝔻𝑅0
→ ℂ

is analyticOnNhd 𝔻𝑅0
with 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. For 𝐽 from theorem 220, then 𝐵(𝑧) =
𝐵(0) exp(𝐽(𝑧)) for all 𝑧 ∈ 𝔻𝑅.

Proof. By theorems 221 and 231.

Lemma 233 (Modulus of exp(𝐽(𝑧))). Let 0 < 𝑅 < 𝑅0 < 1, and assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is

analyticOnNhd 𝔻𝑅0
and 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐽 be the function from theorem 220.
Then for any 𝑧 ∈ 𝔻𝑅,

| exp(𝐽(𝑧))| = exp(ℜ(𝐽(𝑧))).
Proof. Apply Mathlib: Complex.abs_exp with 𝑤 = 𝐽(𝑧).
Lemma 234 (Modulus of 𝐵(𝑧) in product form). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0

→ ℂ
is analyticOnNhd 𝔻𝑅0

with 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0
. Let 𝐽 be the function from theorem 220.

Then |𝐵(𝑧)| = |𝐵(0)| ⋅ |𝑒𝐽(𝑧)|.
Proof. By theorem 232, then apply modulus and Mathlib: abs_mul.

Lemma 235 (Modulus of exp(𝐽(𝑧))). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is analyti-

cOnNhd 𝔻𝑅0
with 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐽 be the function from theorem 220. Then
|𝐵(𝑧)| = |𝐵(0)| ⋅ 𝑒ℜ(𝐽(𝑧)).

Proof. By theorems 233 and 234.

Lemma 236 (Logarithm of modulus as sum). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0
→ ℂ is

analyticOnNhd 𝔻𝑅0
with 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐽 be the function from theorem 220.
Then log |𝐵(𝑧)| = log |𝐵(0)| + log(𝑒ℜ(𝐽(𝑧))).
Proof. Apply theorem 235 then Mathlib: Real.log_mul.
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Lemma 237 (Real logarithm of modulus difference). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0
→ ℂ

is analyticOnNhd 𝔻𝑅0
with 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0

. Let 𝐽 be the function from theorem 220.
Then log |𝐵(𝑧)| − log |𝐵(0)| = ℜ(𝐽(𝑧)).
Proof. Apply theorem 236 and Mathlib: Real.log_exp to 𝑥 = ℜ(𝐽(𝑧)).
Lemma 238 (Logarithm of an analytic function). Let 0 < 𝑅 < 𝑅0 < 1, assume 𝐵 ∶ 𝔻𝑅0

→ ℂ is
analyticOnNhd 𝔻𝑅0

with 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅0
. Then there exists 𝐽𝐵 ∶ 𝔻𝑅 → ℂ analyticOnNhd

𝔻𝑅, such that 𝐽𝐵(0) = 0, and 𝐽 ′
𝐵(𝑧) = 𝐵′(𝑧)/𝐵(𝑧) and log |𝐵(𝑧)| − log |𝐵(0)| = ℜ(𝐽𝐵(𝑧)) for all

𝑧 ∈ 𝔻𝑅.

Proof. Apply theorems 220 and 237.
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Chapter 2

Log Derivative

Lemma 239 (Disk inclusion). Let 0 < 𝑅 < 1. Then we have 𝔻𝑅 ⊂ 𝔻1.

Proof. Unfold definitions of 𝔻𝑅 and 𝔻1. Calculate |𝑧| ≤ 𝑅 < 1.

Definition 240 (Zero set). Let 𝑅 > 0 and 𝑓 ∶ 𝔻𝑅 → ℂ. Define the set of zeros 𝒦𝑓(𝑅) = {𝜌 ∈
ℂ ∶ |𝜌| ≤ 𝑅 and 𝑓(𝜌) = 0}.

Lemma 241 (Zero containment). Let 𝑅 > 0 and 𝑓 ∶ 𝔻𝑅 → ℂ. Then we have 𝒦𝑓(𝑅) ⊂ 𝔻𝑅.

Proof. Unfold definition of 𝒦𝑓(𝑅).
Lemma 242 (Zero in disk). Let 0 < 𝑅 < 1 and 𝑓 ∶ 𝔻1 → ℂ. Then we have 𝒦𝑓(𝑅) ⊂ {𝜌 ∈ 𝔻1 ∶
𝑓(𝜌) = 0}.

Proof. Unfold definition of 𝒦𝑓(𝑅).
Lemma 243 (Accumulation point). Let 𝐷 ⊂ ℂ be a compact set. If 𝑍 ⊂ 𝐷 is an infinite subset,
then 𝑍 has an accumulation point 𝜌0 ∈ 𝐷.

Proof.

Lemma 244 (Zeros accumulate). Let 𝑅 > 0 and 𝑓 ∶ 𝔻𝑅 → ℂ. If 𝒦𝑓(𝑅) ⊂ 𝔻𝑅 is infinite, then
𝒦𝑓(𝑅) has an accumulation point 𝜌0 ∈ 𝔻𝑅.

Proof. Apply Lemmas 99, 241, 243 with 𝐷 = 𝔻𝑅 and 𝑍 = 𝒦𝑓(𝑅).

Lemma 245 (Identity theorem). Let 𝑓 ∶ 𝔻1 → ℂ be analytic. Suppose there exists 𝜌0 ∈ 𝔻1 an
accumulation point of {𝜌 ∈ 𝔻1 ∶ 𝑓(𝜌) = 0}. Then 𝑓(𝑧) = 0 for all 𝑧 ∈ 𝔻1.

Proof.

Lemma 246 (Identity theorem R). Let 0 < 𝑅 < 1 and 𝑓 ∶ 𝔻1 → ℂ be analytic. Suppose there
exists 𝜌0 ∈ 𝔻𝑅 an accumulation point of {𝜌 ∈ 𝔻1 ∶ 𝑓(𝜌) = 0}. Then 𝑓(𝑧) = 0 for all 𝑧 ∈ 𝔻1.

Proof. Apply Lemmas 245 and 239.

Lemma 247 (Identity on K). Let 0 < 𝑅 < 1 and 𝑓 ∶ 𝔻1 → ℂ be analytic. Suppose there exists
𝜌0 ∈ 𝔻𝑅 an accumulation point of 𝒦𝑓(𝑅). Then 𝑓(𝑧) = 0 for all 𝑧 ∈ 𝔻1.
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Proof. Apply Lemmas 246 and 242.

Lemma 248 (Infinite zeros imply). Let 0 < 𝑅 < 1 and 𝑓 ∶ 𝔻1 → ℂ be analytic. If 𝒦𝑓(𝑅) is
infinite, then 𝑓(𝑧) = 0 for all 𝑧 ∈ 𝔻1.

Proof. Apply Lemmas 247 and 244.

Lemma 249 (Finite zeros). Let 0 < 𝑅 < 1 and 𝑓 ∶ 𝔻1 → ℂ be analytic. If there exists 𝑧 ∈ 𝔻1
such that 𝑓(𝑧) ≠ 0, then 𝒦𝑓(𝑅) is finite.

Proof. Contrapositive of Lemma 248.

2.1 𝐵𝑓 analytic and never zero
Definition 250 (Zero order). Let 0 < 𝑅1 < 1 and 𝑓 ∶ ℂ → ℂ be a function that is Analyti-
cOnNhd 𝔻1. For any zero 𝜌 ∈ 𝒦𝑓(𝑅1) of the function 𝑓 , we define 𝑚𝜌,𝑓 as the analytic order of
𝑓 at 𝜌, denoted by analyticOrderAt 𝑓 𝜌.

Lemma 251 (Order is integer). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ be a function that is

AnalyticOnNhd 𝔻1. If 𝑓(0) ≠ 0 then 𝑚𝜌,𝑓 ∈ ℕ for all 𝜌 ∈ 𝒦𝑓(𝑅1).
Proof. Let 𝜌 be an arbitrary element of 𝒦𝑓(𝑅1). By the definition of 𝒦𝑓(𝑅1) (see theorem 240),
any element 𝜌 ∈ 𝒦𝑓(𝑅1) is a zero of 𝑓 , which means 𝑓(𝜌) = 0. The function 𝑓 is assumed
to be ‘AnalyticOnNhd‘ on 𝔻1. This implies that for any point 𝑤 ∈ 𝔻1, there exists an open
neighborhood of 𝑤 where 𝑓 is analytic. Since 𝜌 ∈ 𝒦𝑓(𝑅1) ⊂ 𝔻𝑅1

⊂ 𝔻1, 𝑓 is analytic in a
neighborhood of 𝜌. We are given that 𝑓(0) ≠ 0. This implies that the function 𝑓 is not identically
zero on any open connected set containing the origin. Since 𝑓 is analytic on a connected open
neighborhood of 𝔻1, if 𝑓 were identically zero on any open subset of its domain, it would have to be
identically zero on the entire connected component, which would contradict 𝑓(0) ≠ 0. Therefore,
𝑓 is not identically zero in any neighborhood of 𝜌 (this is the consequence of theorem 282). The
quantity 𝑚𝜌,𝑓 is defined as the analytic order of 𝑓 at 𝜌. For a function that is analytic at a
point 𝜌 but not identically zero in a neighborhood of 𝜌, the order of a zero at 𝜌 is a well-defined
non-negative integer. Specifically, the order is the smallest integer 𝑛 ≥ 0 such that the 𝑛-th
derivative 𝑓 (𝑛)(𝜌) is non-zero. Since 𝑓 is not identically zero around 𝜌, not all derivatives can be
zero. Thus, 𝑚𝜌,𝑓 must be a non-negative integer, i.e., 𝑚𝜌,𝑓 ∈ ℕ = {0, 1, 2, … }.

Lemma 252 (Order at least one). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ be a function that

is AnalyticOnNhd 𝔻1. If 𝑓(0) ≠ 0 then 𝑚𝜌,𝑓 ≥ 1 for all 𝜌 ∈ 𝒦𝑓(𝑅1).
Proof. Let 𝜌 be an arbitrary element of 𝒦𝑓(𝑅1). From theorem 251, we have established that
𝑚𝜌,𝑓 is a non-negative integer. The analytic order of a function 𝑓 at a point 𝜌, 𝑚𝜌,𝑓 , is equal
to 0 if and only if 𝑓(𝜌) ≠ 0. By the definition of the set of zeros 𝒦𝑓(𝑅1) (see theorem 280), for
any 𝜌 ∈ 𝒦𝑓(𝑅1), we have 𝑓(𝜌) = 0. Since 𝑓(𝜌) = 0, the order 𝑚𝜌,𝑓 cannot be 0. Given that
𝑚𝜌,𝑓 is a non-negative integer, it must be strictly greater than 0. Therefore, 𝑚𝜌,𝑓 ≥ 1 for all
𝜌 ∈ 𝒦𝑓(𝑅1).
Lemma 253 (Analytic division). Let 𝐷 ⊂ ℂ be an open set, and let 𝑤 ∈ 𝐷. Let ℎ ∶ 𝐷 → ℂ and
𝑔 ∶ 𝐷 → ℂ be functions that are analyticAt 𝑤. If 𝑔(𝑤) ≠ 0, then the function 𝑧 ↦ ℎ(𝑧)/𝑔(𝑧) is
analyticAt 𝑤.
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Proof. We are given that the functions ℎ and 𝑔 are analytic at 𝑤. This means they are complex
differentiable in a neighborhood of 𝑤. We are also given the crucial assumption that 𝑔(𝑤) ≠ 0.
Since 𝑔 is analytic at 𝑤, it is also continuous at 𝑤. By the definition of continuity, for any 𝜖 > 0,
there exists a 𝛿 > 0 such that if |𝑧 − 𝑤| < 𝛿, then |𝑔(𝑧) − 𝑔(𝑤)| < 𝜖. Let’s choose 𝜖 = |𝑔(𝑤)|/2.
Since 𝑔(𝑤) ≠ 0, 𝜖 > 0. Then there exists a neighborhood of 𝑤, say 𝑈 = 𝐷(𝑤, 𝛿), such that for all
𝑧 ∈ 𝑈 , |𝑔(𝑧) − 𝑔(𝑤)| < |𝑔(𝑤)|/2. This implies 𝑔(𝑧) ≠ 0 for all 𝑧 ∈ 𝑈 . Now consider the function
𝑞(𝑧) = 1/𝑔(𝑧) defined on the neighborhood 𝑈 . The function 𝑧 ↦ 1/𝑧 is analytic on ℂ ∖ {0}.
Since 𝑔 is analytic at 𝑤 and its image 𝑔(𝑧) for 𝑧 ∈ 𝑈 is contained in ℂ ∖ {0}, the composition
1/𝑔 is analytic at 𝑤. The function we are interested in is ℎ(𝑧)/𝑔(𝑧), which can be written as
the product of two functions: ℎ(𝑧) and 𝑞(𝑧) = 1/𝑔(𝑧). The product of two functions that are
analytic at a point 𝑤 is also analytic at 𝑤. Since both ℎ(𝑧) and 1/𝑔(𝑧) are analytic at 𝑤, their
product ℎ(𝑧)/𝑔(𝑧) is also analytic at 𝑤.

Lemma 254 (Denominator analytic). Let 𝑆 ⊂ ℂ be a finite set, and for each 𝑠 ∈ 𝑆, let 𝑛𝑠 ∈ ℕ
be a positive integer. Then for all 𝑤 ∉ 𝑆, the function 𝑃(𝑧) = ∏𝑠∈𝑆(𝑧 − 𝑠)𝑛𝑠 is analyticAt 𝑤
and 𝑃(𝑤) ≠ 0.
Proof. Let 𝑤 be an arbitrary point in ℂ ∖ 𝑆. First, we show that 𝑃(𝑧) is analytic at 𝑤. For each
𝑠 ∈ 𝑆, consider the factor 𝑓𝑠(𝑧) = (𝑧 − 𝑠)𝑛𝑠 . This is a polynomial in 𝑧, and all polynomials are
analytic on the entire complex plane ℂ. Therefore, each function 𝑓𝑠(𝑧) is analytic at 𝑤. The
function 𝑃(𝑧) is defined as the product of the functions 𝑓𝑠(𝑧) for all 𝑠 in the finite set 𝑆. A finite
product of functions that are analytic at a point 𝑤 is itself analytic at 𝑤. Therefore, 𝑃(𝑧) is
analytic at 𝑤.

Next, we show that 𝑃(𝑤) ≠ 0. The value of the function at 𝑤 is given by 𝑃(𝑤) = ∏𝑠∈𝑆(𝑤 −
𝑠)𝑛𝑠 . A product of complex numbers is zero if and only if at least one of the factors is zero.
Let’s examine an arbitrary factor (𝑤 − 𝑠)𝑛𝑠 for some 𝑠 ∈ 𝑆. We are given the assumption that
𝑤 ∉ 𝑆. This means that for any 𝑠 ∈ 𝑆, we have 𝑤 ≠ 𝑠, which implies 𝑤 − 𝑠 ≠ 0. Since 𝑛𝑠 is a
positive integer, (𝑤 − 𝑠)𝑛𝑠 is also non-zero. As this holds for every 𝑠 ∈ 𝑆, none of the factors in
the product 𝑃(𝑤) are zero. Therefore, the product 𝑃(𝑤) is not zero.

Lemma 255 (Ratio analytic). Let 𝑤 ∈ ℂ, 0 < 𝑅1 < 𝑅 < 1, and ℎ ∶ 𝔻𝑅 → ℂ be a function that
is AnalyticAt 𝑤. Let 𝑆 ⊂ 𝔻𝑅1

be a finite set, and for each 𝑠 ∈ 𝑆, let 𝑛𝑠 ∈ ℕ be a positive integer.
Then for all 𝑤 ∈ 𝔻1 ∖ 𝑆, the function ℎ(𝑧)/ ∏𝑠∈𝑆(𝑧 − 𝑠)𝑛𝑠 is analyticAt 𝑤.

Proof. Let 𝐹(𝑧) = ℎ(𝑧)
∏𝑠∈𝑆(𝑧−𝑠)𝑛𝑠 . We want to show that 𝐹(𝑧) is analytic at an arbitrary point

𝑤 ∈ 𝔻1 ∖ 𝑆. Let’s define the denominator as 𝑔(𝑧) = ∏𝑠∈𝑆(𝑧 − 𝑠)𝑛𝑠 . Then 𝐹(𝑧) = ℎ(𝑧)/𝑔(𝑧).
We will use theorem 253. To do so, we must verify its hypotheses for the point 𝑤: 1. ℎ(𝑧) is
analytic at 𝑤. This is given as an assumption in the lemma statement. 2. 𝑔(𝑧) is analytic at 𝑤.
3. 𝑔(𝑤) ≠ 0.

We can verify the second and third hypotheses using theorem 254. The function 𝑔(𝑧) has the
precise form required by theorem 254, with the set of roots being 𝑆 and the exponents being 𝑛𝑠.
The assumptions of theorem 254 are: a. 𝑆 is a finite set. This is given in the current lemma’s
assumptions. b. For each 𝑠 ∈ 𝑆, 𝑛𝑠 is a positive integer. This is also given. c. The point of
evaluation 𝑤 is not in 𝑆. Our assumption is 𝑤 ∈ 𝔻1 ∖ 𝑆, which explicitly states 𝑤 ∉ 𝑆.

Since all assumptions of theorem 254 are met, we can conclude that the function 𝑔(𝑧) is
analytic at 𝑤 and that 𝑔(𝑤) ≠ 0. Now we have verified all three hypotheses for theorem 253.
Therefore, we can conclude that the ratio 𝐹(𝑧) = ℎ(𝑧)/𝑔(𝑧) is analytic at 𝑤.

Lemma 256 (Zero factorization). Let 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd 𝔻1
with 𝑓(0) ≠ 0. For each 𝜎 ∈ 𝒦𝑓(𝑅1), there exists a function ℎ𝜎(𝑧) that is AnalyticAt 𝜎, and
ℎ𝜎(𝜎) ≠ 0, and 𝑓(𝑧) = (𝑧 − 𝜎)𝑚𝜎,𝑓 ℎ𝜎(𝑧) Eventually for 𝑧 in nbhds of 𝜎.
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Proof. Let 𝜎 be an arbitrary zero in 𝒦𝑓(𝑅1). By assumption, 𝑓 is ‘AnalyticOnNhd‘ 𝔻1. This
means there is an open neighborhood 𝑈 of 𝜎 where 𝑓 is analytic. On this neighborhood, 𝑓 can
be represented by its Taylor series centered at 𝜎: 𝑓(𝑧) = ∑∞

𝑛=0 𝑎𝑛(𝑧 − 𝜎)𝑛, where 𝑎𝑛 = 𝑓(𝑛)(𝜎)
𝑛! .

Let 𝑚 = 𝑚𝜎,𝑓 . By theorem 250, 𝑚 is the analytic order of 𝑓 at 𝜎. By definition of analytic
order, this means that 𝑚 is the smallest non-negative integer such that 𝑓 (𝑚)(𝜎) ≠ 0. Since
𝜎 ∈ 𝒦𝑓(𝑅1), we have 𝑓(𝜎) = 0. This implies that 𝑚 ≥ 1. The definition of order 𝑚 implies that
𝑓 (𝑘)(𝜎) = 0 for all integers 0 ≤ 𝑘 < 𝑚, and 𝑓 (𝑚)(𝜎) ≠ 0. Consequently, the Taylor coefficients
𝑎𝑘 = 𝑓 (𝑘)(𝜎)/𝑘! are zero for 𝑘 < 𝑚, and 𝑎𝑚 = 𝑓 (𝑚)(𝜎)/𝑚! ≠ 0. The Taylor series for 𝑓(𝑧) can
thus be written as: 𝑓(𝑧) = 𝑎𝑚(𝑧 − 𝜎)𝑚 + 𝑎𝑚+1(𝑧 − 𝜎)𝑚+1 + 𝑎𝑚+2(𝑧 − 𝜎)𝑚+2 + … We can factor
out the term (𝑧 −𝜎)𝑚 from the series: 𝑓(𝑧) = (𝑧 −𝜎)𝑚 (𝑎𝑚 + 𝑎𝑚+1(𝑧 − 𝜎) + 𝑎𝑚+2(𝑧 − 𝜎)2 + … ).
This holds for all 𝑧 in the disk of convergence of the Taylor series, which is a neighborhood of 𝜎.
Let us define the function ℎ𝜎(𝑧) as the series in the parenthesis: ℎ𝜎(𝑧) = ∑∞

𝑗=0 𝑎𝑚+𝑗(𝑧 − 𝜎)𝑗. A
power series defines an analytic function within its radius of convergence. This series for ℎ𝜎(𝑧)
has the same radius of convergence as the series for 𝑓(𝑧), so ℎ𝜎(𝑧) is analytic in a neighborhood
of 𝜎, i.e., it is ‘AnalyticAt‘ 𝜎. By our construction, the identity 𝑓(𝑧) = (𝑧 − 𝜎)𝑚ℎ𝜎(𝑧) holds
in this neighborhood. Finally, we must verify that ℎ𝜎(𝜎) ≠ 0. We evaluate ℎ𝜎(𝑧) at 𝑧 = 𝜎:
ℎ𝜎(𝜎) = 𝑎𝑚 + 𝑎𝑚+1(𝜎 − 𝜎) + 𝑎𝑚+2(𝜎 − 𝜎)2 + ⋯ = 𝑎𝑚. As we established that 𝑎𝑚 ≠ 0, we have
ℎ𝜎(𝜎) ≠ 0. This completes the proof.

Definition 257 (C function). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. We define the function 𝐶𝑓 ∶ 𝔻𝑅 → ℂ as follows. This function
is constructed by dividing 𝑓(𝑧) by a polynomial whose roots are the zeros of 𝑓 inside 𝔻𝑅1

. The
definition is split into two cases to handle the points where the denominator would otherwise be
zero.

𝐶𝑓(𝑧) =

⎧{{{
⎨{{{⎩

𝑓(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓

if 𝑧 ≠ 𝜌 for all 𝜌 ∈ 𝒦𝑓(𝑅1)

ℎ𝜎(𝜎)
∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝜎 − 𝜌)𝑚𝜌,𝑓

if 𝑧 = 𝜎 for some 𝜎 ∈ 𝒦𝑓(𝑅1)

Lemma 258 (C analytic off K). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. Then 𝐶𝑓(𝑧) is analyticAt 𝑧 for all 𝑧 ∈ 𝔻𝑅 ∖ 𝒦𝑓(𝑅1).

Proof. Let 𝑧 be an arbitrary point in the set 𝔻𝑅 ∖ 𝒦𝑓(𝑅1). By the definition of this set, 𝑧 ∉
𝒦𝑓(𝑅1). According to theorem 257, for such a point 𝑧, the function 𝐶𝑓(𝑧) is defined by the
first case: 𝐶𝑓(𝑧) = 𝑓(𝑧)

∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 . We can prove this function is analytic at 𝑧 by applying
theorem 255. Let’s verify its hypotheses:

• Let ℎ(𝑧) = 𝑓(𝑧), 𝑆 = 𝒦𝑓(𝑅1), and for each 𝜌 ∈ 𝑆, let 𝑛𝜌 = 𝑚𝜌,𝑓 . The point of evaluation
is 𝑤 = 𝑧.

• The function ℎ(𝑧) = 𝑓(𝑧) is ‘AnalyticOnNhd‘ 𝔻1, so it is analytic at 𝑧 ∈ 𝔻𝑅 ⊂ 𝔻1.

• The set 𝑆 = 𝒦𝑓(𝑅1) is the set of zeros of a non-zero analytic function in a compact set
𝔻𝑅1

, and is therefore a finite set, as stated by theorem 249.

• For each 𝜌 ∈ 𝑆, the exponent 𝑛𝜌 = 𝑚𝜌,𝑓 is a positive integer by theorem 252.

• The point of evaluation 𝑤 = 𝑧 is in 𝔻𝑅 ∖ 𝑆, which is a subset of 𝔻1 ∖ 𝑆.
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All hypotheses of theorem 255 are satisfied. Therefore, we conclude that 𝐶𝑓(𝑧) is analytic at 𝑧.
Since 𝑧 was an arbitrary point in 𝔻𝑅 ∖ 𝒦𝑓(𝑅1), the statement holds for all such points.

Lemma 259 (C at zero). Let 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0.
For each 𝜎 ∈ 𝒦𝑓(𝑅1), we have Eventually for 𝑧 in nbhds of 𝜎, if 𝑧 = 𝜎 then

𝐶𝑓(𝑧) = ℎ𝜎(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧 − 𝜌)𝑚𝜌,𝑓

.

Proof. Let 𝜎 be an arbitrary point in 𝒦𝑓(𝑅1). We are interested in the case where 𝑧 = 𝜎. By
theorem 257, when 𝑧 = 𝜎, 𝐶𝑓(𝑧) is defined by the second case: 𝐶𝑓(𝜎) = ℎ𝜎(𝜎)

∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝜎−𝜌)𝑚𝜌,𝑓 .

The expression we are asked to prove is 𝐶𝑓(𝑧) = ℎ𝜎(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓 . Evaluating the right-hand

side at 𝑧 = 𝜎 gives: ℎ𝜎(𝜎)
∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝜎−𝜌)𝑚𝜌,𝑓 . This is precisely the definition of 𝐶𝑓(𝜎). Thus, the

equality holds at 𝑧 = 𝜎. The phrase ”Eventually for 𝑧 in nbhds of 𝜎” is satisfied trivially, as
the statement only concerns the point 𝑧 = 𝜎 itself and holds true at that point regardless of the
neighborhood.

Lemma 260 (Zeros isolated). Let 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd 𝔻1 with
𝑓(0) ≠ 0. For any 𝜎, 𝜌 ∈ 𝒦𝑓(𝑅1) with 𝜎 ≠ 𝜌, Eventually for 𝑧 in nbhds of 𝜎, we have 𝑧 ≠ 𝜌.

Proof. The statement ”Eventually for 𝑧 in nbhds of 𝜎, we have 𝑧 ≠ 𝜌” means that there exists a
neighborhood of 𝜎 that does not contain 𝜌. Let 𝜎 and 𝜌 be two distinct points in 𝒦𝑓(𝑅1). Let
𝑑 = |𝜎 − 𝜌| be the distance between them. Since 𝜎 ≠ 𝜌, we have 𝑑 > 0. Consider the open disk
𝑈 = 𝐷(𝜎, 𝑑) centered at 𝜎 with radius 𝑑. This is a neighborhood of 𝜎. For any point 𝑧 ∈ 𝑈 , the
distance from 𝑧 to 𝜎 is less than 𝑑, i.e., |𝑧 − 𝜎| < 𝑑. The distance from any such 𝑧 to 𝜌 is |𝑧 − 𝜌|.
By the reverse triangle inequality, |𝑧 − 𝜌| = |(𝑧 − 𝜎) − (𝜌 − 𝜎)| ≥ ||𝜌 − 𝜎| − |𝑧 − 𝜎|| = |𝑑 − |𝑧 − 𝜎||.
Since |𝑧 − 𝜎| < 𝑑, the value 𝑑 − |𝑧 − 𝜎| is positive. Thus, |𝑧 − 𝜌| > 0, which implies 𝑧 ≠ 𝜌.
Therefore, the neighborhood 𝑈 of 𝜎 does not contain the point 𝜌. This proves the claim.

Lemma 261 (C near zero). Let 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd 𝔻1 with
𝑓(0) ≠ 0. For each 𝜎 ∈ 𝒦𝑓(𝑅1), we have Eventually for 𝑧 in nbhds of 𝜎, if 𝑧 ≠ 𝜎 then

𝐶𝑓(𝑧) = (𝑧 − 𝜎)𝑚𝜎,𝑓 ℎ𝜎(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓

.

Proof. Let 𝜎 be an arbitrary point in 𝒦𝑓(𝑅1). By theorem 249, the set 𝒦𝑓(𝑅1) is finite. Let
𝒦𝑓(𝑅1) ∖ {𝜎} = {𝜌1, 𝜌2, … , 𝜌𝑘}. For each 𝜌𝑖 in this set, since 𝜌𝑖 ≠ 𝜎, by theorem 260 there
exists a neighborhood 𝑈𝑖 of 𝜎 such that for all 𝑧 ∈ 𝑈𝑖, 𝑧 ≠ 𝜌𝑖. Let 𝑈 = ⋂𝑘

𝑖=1 𝑈𝑖. As a finite
intersection of neighborhoods of 𝜎, 𝑈 is also a neighborhood of 𝜎. For any 𝑧 ∈ 𝑈 , we have
𝑧 ≠ 𝜌𝑖 for all 𝑖 = 1, … , 𝑘. Now, consider a point 𝑧 in this neighborhood 𝑈 such that 𝑧 ≠ 𝜎. For
such a 𝑧, we have 𝑧 ∉ {𝜌1, … , 𝜌𝑘} and 𝑧 ≠ 𝜎, which means 𝑧 ∉ 𝒦𝑓(𝑅1). By the first case of
theorem 257, for such a 𝑧, we have 𝐶𝑓(𝑧) = 𝑓(𝑧)

∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 . From theorem 256, there exists a

neighborhood of 𝜎, say 𝑉 , and a function ℎ𝜎(𝑧) such that 𝑓(𝑧) = (𝑧 − 𝜎)𝑚𝜎,𝑓 ℎ𝜎(𝑧) for all 𝑧 ∈ 𝑉 .
Let 𝑊 = 𝑈 ∩ 𝑉 . This is also a neighborhood of 𝜎. For any 𝑧 ∈ 𝑊 with 𝑧 ≠ 𝜎, both of the above
representations are valid. Substituting the expression for 𝑓(𝑧) into the one for 𝐶𝑓(𝑧), we get:
𝐶𝑓(𝑧) = (𝑧−𝜎)𝑚𝜎,𝑓 ℎ𝜎(𝑧)

∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 . This holds for all 𝑧 in the punctured neighborhood 𝑊 ∖ {𝜎}, which
satisfies the ”Eventually” condition.
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Lemma 262 (Product split). Let 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd 𝔻1 with
𝑓(0) ≠ 0. For each 𝜎 ∈ 𝒦𝑓(𝑅1) we have

∏
𝜌∈𝒦𝑓(𝑅1)

(𝑧 − 𝜌)𝑚𝜌,𝑓 = (𝑧 − 𝜎)𝑚𝜎,𝑓 ∏
𝜌∈𝒦𝑓(𝑅1)∖{𝜎}

(𝑧 − 𝜌)𝑚𝜌,𝑓

Proof. Let 𝑆 = 𝒦𝑓(𝑅1). By theorem 249, 𝑆 is a finite set. Let 𝜎 be any element of 𝑆. The
set 𝑆 can be partitioned into two disjoint subsets: {𝜎} and 𝑆 ∖ {𝜎}. The product over the
finite set 𝑆 can be split into the product of the terms corresponding to these two subsets. Let
𝑎𝜌(𝑧) = (𝑧 − 𝜌)𝑚𝜌,𝑓 . The product over 𝑆 is ∏𝜌∈𝑆 𝑎𝜌(𝑧). By the commutative property of

multiplication, we can separate the term for 𝜌 = 𝜎: ∏𝜌∈𝑆 𝑎𝜌(𝑧) = 𝑎𝜎(𝑧) ⋅ (∏𝜌∈𝑆∖{𝜎} 𝑎𝜌(𝑧)).
Substituting the definition of 𝑎𝜌(𝑧) back into this identity gives: ∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓 = (𝑧 −
𝜎)𝑚𝜎,𝑓 ⋅ (∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧 − 𝜌)𝑚𝜌,𝑓 ). This is a fundamental property of products over finite
sets.

Lemma 263 (Product quotient). Let 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd 𝔻1 with
𝑓(0) ≠ 0. For each 𝜎 ∈ 𝒦𝑓(𝑅1) and 𝑧 ∉ 𝒦𝑓(𝑅1), we have

(𝑧 − 𝜎)𝑚𝜎,𝑓

∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓
= 1

∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧 − 𝜌)𝑚𝜌,𝑓

Proof. From theorem 262, we have the identity: ∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 = (𝑧−𝜎)𝑚𝜎,𝑓 ∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−
𝜌)𝑚𝜌,𝑓 . To manipulate this equation by division, we must ensure the terms we divide by are non-
zero. The crucial assumption is that 𝑧 ∉ 𝒦𝑓(𝑅1). This means that for every 𝜌 ∈ 𝒦𝑓(𝑅1),
we have 𝑧 ≠ 𝜌, and therefore 𝑧 − 𝜌 ≠ 0. Since 𝑚𝜌,𝑓 ≥ 1, it follows that (𝑧 − 𝜌)𝑚𝜌,𝑓 ≠ 0
for all 𝜌 ∈ 𝒦𝑓(𝑅1). This implies that all factors in the products are non-zero. In particu-
lar, the denominator on the left-hand side, ∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓 , is non-zero. Also, the term
(𝑧 − 𝜎)𝑚𝜎,𝑓 is non-zero. We can therefore divide both sides of the identity from theorem 262
by the non-zero quantity (𝑧 − 𝜎)𝑚𝜎,𝑓 ⋅ (∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓 ). Starting with the identity and

dividing by ∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓 gives: 1 =
(𝑧−𝜎)𝑚𝜎,𝑓 ∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓

∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 . Now, dividing by

the non-zero term ∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧 − 𝜌)𝑚𝜌,𝑓 yields the desired result: 1
∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓 =

(𝑧−𝜎)𝑚𝜎,𝑓

∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 .

Lemma 264 (C off K). Let 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0.
For each 𝜎 ∈ 𝒦𝑓(𝑅1), we have Eventually for 𝑧 in nbhds of 𝜎, if 𝑧 ≠ 𝜎 then

𝐶𝑓(𝑧) = ℎ𝜎(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧 − 𝜌)𝑚𝜌,𝑓

.

Proof. By theorem 261, there exists a neighborhood 𝑊 of 𝜎 such that for all 𝑧 ∈ 𝑊 with
𝑧 ≠ 𝜎, we have the identity: 𝐶𝑓(𝑧) = (𝑧−𝜎)𝑚𝜎,𝑓 ℎ𝜎(𝑧)

∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 . We can rewrite the right-hand side as a

product: 𝐶𝑓(𝑧) = ℎ𝜎(𝑧) ⋅ ( (𝑧−𝜎)𝑚𝜎,𝑓

∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 ). For a point 𝑧 ∈ 𝑊 with 𝑧 ≠ 𝜎, we established in

the proof of theorem 261 that 𝑧 ∉ 𝒦𝑓(𝑅1). Therefore, the conditions for theorem 263 are met
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for such a point 𝑧. Applying this lemma, we can replace the fractional part: (𝑧−𝜎)𝑚𝜎,𝑓

∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 =
1

∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓 . Substituting this back into the expression for 𝐶𝑓(𝑧) gives: 𝐶𝑓(𝑧) = ℎ𝜎(𝑧) ⋅
1

∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓 = ℎ𝜎(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓 . This equality holds for all 𝑧 ∈ 𝑊 ∖ {𝜎}, which

satisfies the ”Eventually” condition.

Lemma 265 (C local form). Let 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd 𝔻1 with
𝑓(0) ≠ 0. For each 𝜎 ∈ 𝒦𝑓(𝑅1), we have Eventually for 𝑧 in nbhds of 𝜎,

𝐶𝑓(𝑧) = ℎ𝜎(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧 − 𝜌)𝑚𝜌,𝑓

.

Proof. Let 𝜎 be an arbitrary point in 𝒦𝑓(𝑅1). Let us define the function 𝑔𝜎(𝑧) = ℎ𝜎(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓 .

From theorem 264, we know there exists a neighborhood of 𝜎, let’s call it 𝑊 , such that for all
𝑧 ∈ 𝑊 ∖ {𝜎}, the equality 𝐶𝑓(𝑧) = 𝑔𝜎(𝑧) holds. From theorem 259, we know that at the
point 𝑧 = 𝜎, the equality 𝐶𝑓(𝜎) = 𝑔𝜎(𝜎) also holds. Combining these two results, we see that
𝐶𝑓(𝑧) = 𝑔𝜎(𝑧) for all points 𝑧 in the neighborhood 𝑊 . This proves the statement.

Lemma 266 (h ratio analytic). Let 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd 𝔻1 with
𝑓(0) ≠ 0. For each 𝜎 ∈ 𝒦𝑓(𝑅1), the function ℎ𝜎(𝑧)

∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓 is analyticAt 𝜎.

Proof. Let 𝜎 be an arbitrary point in 𝒦𝑓(𝑅1). We want to prove that the function 𝑔𝜎(𝑧) =
ℎ𝜎(𝑧)

∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓 is analytic at 𝜎. We will use theorem 255 with the point of evaluation
𝑤 = 𝜎. Let’s identify the components and verify the hypotheses:

• The numerator function is ℎ(𝑧) = ℎ𝜎(𝑧).
• The set of roots in the denominator is 𝑆 = 𝒦𝑓(𝑅1) ∖ {𝜎}.

• The exponents are 𝑛𝜌 = 𝑚𝜌,𝑓 for each 𝜌 ∈ 𝑆.

Now we check the conditions of theorem 255:

1. ℎ(𝑧) must be analytic at 𝜎. By theorem 256, the function ℎ𝜎(𝑧) is analytic at 𝜎. This
condition is met.

2. 𝑆 must be a finite set. Since 𝒦𝑓(𝑅1) is finite (by theorem 249), its subset 𝑆 is also finite.
This condition is met.

3. For each 𝜌 ∈ 𝑆, 𝑛𝜌 must be a positive integer. For 𝜌 ∈ 𝑆, 𝑛𝜌 = 𝑚𝜌,𝑓 . By theorem 252,
𝑚𝜌,𝑓 ≥ 1. This condition is met.

4. The point of evaluation 𝜎 must not be in 𝑆. By definition, 𝑆 = 𝒦𝑓(𝑅1) ∖ {𝜎}, so 𝜎 ∉ 𝑆.
This condition is met.

Since all hypotheses of theorem 255 are satisfied, we can conclude that the function 𝑔𝜎(𝑧) is
analytic at 𝜎.

Lemma 267 (C analytic at K). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. Then for every 𝜎 ∈ 𝒦𝑓(𝑅1), the function 𝐶𝑓(𝑧) is analyticAt
𝜎.
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Proof. Let 𝜎 be an arbitrary point in 𝒦𝑓(𝑅1). By theorem 265, there exists a neighborhood of
𝜎, say 𝑊 , such that for all 𝑧 ∈ 𝑊 , 𝐶𝑓(𝑧) is equal to the function 𝑔𝜎(𝑧) = ℎ𝜎(𝑧)

∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝑧−𝜌)𝑚𝜌,𝑓 .

By theorem 266, the function 𝑔𝜎(𝑧) is analytic at 𝜎. A function is defined to be analytic at a
point 𝜎 if it is equal to a function known to be analytic at 𝜎 in a neighborhood of 𝜎. Since
𝐶𝑓(𝑧) = 𝑔𝜎(𝑧) on the neighborhood 𝑊 and 𝑔𝜎(𝑧) is analytic at 𝜎, it follows directly that 𝐶𝑓(𝑧)
is also analytic at 𝜎. As 𝜎 was an arbitrary element of 𝒦𝑓(𝑅1), this holds for all points in that
set.

Lemma 268 (C is analytic). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. Then 𝐶𝑓(𝑧) is analyticAt 𝑧 for all 𝑧 ∈ 𝔻𝑅.

Proof. Let 𝑧 be an arbitrary point in the closed disk 𝔻𝑅. We must show that 𝐶𝑓 is analytic at
𝑧. We can partition the domain 𝔻𝑅 into two disjoint sets: those points that are in 𝒦𝑓(𝑅1) and
those that are not. Note that 𝒦𝑓(𝑅1) ⊂ 𝔻𝑅1

⊂ 𝔻𝑅. Case 1: The point 𝑧 is not in 𝒦𝑓(𝑅1). In
this case, 𝑧 ∈ 𝔻𝑅 ∖ 𝒦𝑓(𝑅1). By theorem 258, the function 𝐶𝑓 is analytic at 𝑧. Case 2: The
point 𝑧 is in 𝒦𝑓(𝑅1). In this case, let’s call the point 𝜎 = 𝑧. By theorem 267, the function 𝐶𝑓 is
analytic at 𝜎. Since any point 𝑧 ∈ 𝔻𝑅 must fall into one of these two cases, and we have shown
that 𝐶𝑓 is analytic at 𝑧 in both cases, we conclude that 𝐶𝑓(𝑧) is analytic for all 𝑧 ∈ 𝔻𝑅.

Lemma 269 (f nonzero off K). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. Then 𝑓(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1).

Proof. We prove this by contraposition. The contrapositive statement is: if 𝑧 ∈ 𝔻𝑅1
and 𝑓(𝑧) = 0,

then 𝑧 ∈ 𝒦𝑓(𝑅1). Let 𝑧 be a point in 𝔻𝑅1
such that 𝑓(𝑧) = 0. The set 𝒦𝑓(𝑅1) is defined (in

theorem 240) as the set of all points 𝑤 in the closed disk 𝔻𝑅1
for which 𝑓(𝑤) = 0. Since 𝑧 ∈ 𝔻𝑅1

and 𝑓(𝑧) = 0, 𝑧 satisfies the condition for membership in 𝒦𝑓(𝑅1). Therefore, 𝑧 ∈ 𝒦𝑓(𝑅1). This
proves the contrapositive, and thus the original statement is true.

Lemma 270 (C nonzero off K). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. Then 𝐶𝑓(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1).

Proof. Let 𝑧 be an arbitrary point in the set 𝔻𝑅1
∖𝒦𝑓(𝑅1). By definition, 𝑧 ∉ 𝒦𝑓(𝑅1). According

to the first case of theorem 257, 𝐶𝑓(𝑧) is given by the ratio: 𝐶𝑓(𝑧) = 𝑓(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)(𝑧−𝜌)𝑚𝜌,𝑓 . A fraction

is non-zero if and only if its numerator is non-zero and its denominator is finite and non-zero.
Numerator: The numerator is 𝑓(𝑧). Since 𝑧 ∈ 𝔻𝑅1

∖𝒦𝑓(𝑅1), by theorem 269, we have 𝑓(𝑧) ≠ 0.
Denominator: The denominator is the product 𝑃(𝑧) = ∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓 . Since 𝒦𝑓(𝑅1)
is finite, this is a finite product. For the product to be non-zero, each of its factors must be
non-zero. A factor is of the form (𝑧 − 𝜌)𝑚𝜌,𝑓 . Since we assumed 𝑧 ∉ 𝒦𝑓(𝑅1), we have 𝑧 ≠ 𝜌
for all 𝜌 ∈ 𝒦𝑓(𝑅1). This means 𝑧 − 𝜌 ≠ 0. As 𝑚𝜌,𝑓 ≥ 1, it follows that (𝑧 − 𝜌)𝑚𝜌,𝑓 ≠ 0. Since
every factor is non-zero, the denominator is non-zero. Since the numerator is non-zero and the
denominator is non-zero, their ratio 𝐶𝑓(𝑧) must be non-zero.

Lemma 271 (C nonzero on K). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. Then 𝐶𝑓(𝜎) ≠ 0 for all 𝜎 ∈ 𝒦𝑓(𝑅1).
Proof. Let 𝜎 be an arbitrary point in 𝒦𝑓(𝑅1). By the second case of theorem 257, the value of 𝐶𝑓
at 𝜎 is given by: 𝐶𝑓(𝜎) = ℎ𝜎(𝜎)

∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝜎−𝜌)𝑚𝜌,𝑓 . We must show this expression is non-zero. Nu-

merator: The numerator is ℎ𝜎(𝜎). By theorem 256, the function ℎ𝜎 is constructed specifically
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to satisfy ℎ𝜎(𝜎) ≠ 0. Denominator: The denominator is the product ∏𝜌∈𝒦𝑓(𝑅1)∖{𝜎}(𝜎 −𝜌)𝑚𝜌,𝑓 .
This is a finite product. For any 𝜌 in the indexing set 𝒦𝑓(𝑅1)∖{𝜎}, we have 𝜌 ≠ 𝜎, which implies
𝜎 −𝜌 ≠ 0. Since 𝑚𝜌,𝑓 ≥ 1, the factor (𝜎 −𝜌)𝑚𝜌,𝑓 is also non-zero. As a finite product of non-zero
terms, the denominator is non-zero. Since the numerator is non-zero and the denominator is
non-zero, their ratio 𝐶𝑓(𝜎) is non-zero.

Lemma 272 (C never zero). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. Then 𝐶𝑓(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅1

.

Proof. Let 𝑧 be an arbitrary point in the closed disk 𝔻𝑅1
. We partition the domain 𝔻𝑅1

into two
disjoint sets: 𝒦𝑓(𝑅1) and 𝔻𝑅1

∖𝒦𝑓(𝑅1). Any point 𝑧 ∈ 𝔻𝑅1
must belong to exactly one of these

sets. Case 1: 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1). By theorem 270, we have 𝐶𝑓(𝑧) ≠ 0. Case 2: 𝑧 ∈ 𝒦𝑓(𝑅1).

By theorem 271, we have 𝐶𝑓(𝑧) ≠ 0. In both possible cases, 𝐶𝑓(𝑧) is non-zero. Therefore, we
conclude that 𝐶𝑓(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅1

.

Lemma 273 (Blaschke diff). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) = 1. Then the function 𝑧 ↦ ∏𝜌∈𝒦𝑓(𝑅1)(𝑅 − ̄𝜌𝑧/𝑅)𝑚𝜌,𝑓 is differentiableAt 𝑧 for all 𝑧 ∈ 𝔻𝑅.

Proof. By theorem 354. Note 𝒦𝑓(𝑅1) is finite by theorem 249

Lemma 274 (Blaschke nonzero). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) = 1. Then ∏𝜌∈𝒦𝑓(𝑅1)(𝑅 − ̄𝜌𝑧/𝑅)𝑚𝜌,𝑓 ≠ 0 for all 𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1).

Proof. By theorem 354. Note 𝒦𝑓(𝑅1) is finite by theorem 249

Definition 275 (Blaschke B). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is Ana-
lyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. Define the function 𝐵𝑓 ∶ 𝔻𝑅 → ℂ as 𝐵𝑓(𝑧) = 𝐶𝑓(𝑧) ∏𝜌∈𝒦𝑓(𝑅1)(𝑅−

̄𝜌𝑧/𝑅)𝑚𝜌,𝑓 .

Lemma 276 (B and C relation). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. For 𝑧 ∈ 𝔻𝑅 ∖ 𝒦𝑓(𝑅1), we have

𝐵𝑓(𝑧) = 𝑓(𝑧)
∏𝜌∈𝒦𝑓(𝑅1)(𝑅 − ̄𝜌𝑧/𝑅)𝑚𝜌,𝑓

∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓

Proof. By theorems 257 and 275

Lemma 277 (B division). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. For 𝑧 ∈ 𝔻𝑅 ∖ 𝒦𝑓(𝑅1), we have

∏𝜌∈𝒦𝑓(𝑅1)(𝑅 − ̄𝜌𝑧/𝑅)𝑚𝜌,𝑓

∏𝜌∈𝒦𝑓(𝑅1)(𝑧 − 𝜌)𝑚𝜌,𝑓
= ∏

𝜌∈𝒦𝑓(𝑅1)

(𝑅 − ̄𝜌𝑧/𝑅)𝑚𝜌,𝑓

(𝑧 − 𝜌)𝑚𝜌,𝑓

Proof. By Mathlib: Finset.prod_div_distrib Note 𝒦𝑓(𝑅1) is finite by theorem 249.

Lemma 278 (B product pow). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. For 𝑧 ∈ 𝔻𝑅 ∖ 𝒦𝑓(𝑅1), we have

∏
𝜌∈𝒦𝑓(𝑅1)

(𝑅 − ̄𝜌𝑧/𝑅)𝑚𝜌,𝑓

(𝑧 − 𝜌)𝑚𝜌,𝑓
= ∏

𝜌∈𝒦𝑓(𝑅1)
(𝑅 − ̄𝜌𝑧/𝑅

𝑧 − 𝜌 )
𝑚𝜌,𝑓
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Proof. By theorem 277 and Mathlib: div_pow Note 𝑚𝜌,𝑓 ∈ ℕ. Note 𝒦𝑓(𝑅1) is finite by theo-
rem 249.

Lemma 279 (B off K). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ 𝔻1 → ℂ be a function that is AnalyticOnNhd
𝔻1 with 𝑓(0) ≠ 0. For 𝑧 ∈ 𝔻𝑅 ∖ 𝒦𝑓(𝑅1), we have

𝐵𝑓(𝑧) = 𝑓(𝑧) ∏
𝜌∈𝒦𝑓(𝑅1)

(𝑅 − ̄𝜌𝑧/𝑅
𝑧 − 𝜌 )

𝑚𝜌,𝑓

.

Proof. By theorem 276 and theorems 277 and 278

2.2 Bounding 𝐾 ≤ 3 log 𝐵
Lemma 280 (Zero value). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. If
𝜌 ∈ 𝒦𝑓(𝑅1) then 𝑓(𝜌) = 0.

Proof. Unfold definition 240.

Lemma 281 (Zero contrapositive). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. If
𝑓(𝜌) ≠ 0 then 𝜌 ∉ 𝒦𝑓(𝑅1).
Proof. Contrapositive of theorem 280

Lemma 282 (Not zero). Let 𝑓 ∶ ℂ → ℂ. If 𝑓(0) ≠ 0, then 𝑓 is not the identically zero function.

Proof. By definition of the identically zero function.

Lemma 283 (Disk bound). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ. If 𝜌 ∈ 𝒦𝑓(𝑅1) then |𝜌| ≤ 𝑅1.

Proof. By theorem 240, as 𝒦𝑓(𝑅1) is a subset of 𝔻𝑅1
.

Lemma 284 (Zero excluded). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ. If 𝑓(0) ≠ 0 then
0 ∉ 𝒦𝑓(𝑅1).
Proof. By theorem 281.

Lemma 285 (Nonzero rho). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ. If 𝑓(0) ≠ 0 then 𝜌 ≠ 0 for
all 𝜌 ∈ 𝒦𝑓(𝑅1).
Proof. By theorem 284, as 𝜌 is an element of 𝒦𝑓(𝑅1).
Lemma 286 (Mod positive). Let 𝑧 ∈ ℂ. If 𝑧 ≠ 0 then |𝑧| > 0.

Proof. Shown in theorem 35

Lemma 287 (Rho positive). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ. If 𝑓(0) ≠ 0 then |𝜌| > 0 for
all 𝜌 ∈ 𝒦𝑓(𝑅1).
Proof. By theorem 285 and theorem 286.

Lemma 288 (Disk bound). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ. If 𝜌 ∈ 𝒦𝑓(𝑅1) then |𝜌| ≤ 𝑅1.

Proof. By theorem 240, as 𝒦𝑓(𝑅1) is a subset of 𝔻𝑅1
.

Lemma 289 (Inverse mono). Let 𝑥, 𝑦 ∈ ℝ. If 0 < 𝑥 ≤ 𝑦, then 1/𝑥 ≥ 1/𝑦.
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Proof.

Lemma 290 (Inverse bound). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ with 𝑓(0) ≠ 0. If
𝜌 ∈ 𝒦𝑓(𝑅1) then 1/|𝜌| ≥ 1/𝑅1.

Proof. By theorem 287, theorem 288, and theorem 289.

Lemma 291 (Mult inequality). Let 𝑎, 𝑏, 𝑐 ∈ ℝ. If 𝑎 ≤ 𝑏 and 𝑐 > 0, then 𝑎𝑐 ≤ 𝑏𝑐.

Proof.

Lemma 292 (Ratio bound). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ with 𝑓(0) ≠ 0. If 𝜌 ∈ 𝒦𝑓(𝑅1)
then 𝑅/|𝜌| ≥ 𝑅/𝑅1.

Proof. By theorem 290 and theorem 291, using the hypothesis 𝑅 > 0.

Lemma 293 (Mod product). Let {𝑤𝜌}𝜌∈𝐾 be a finite collection of complex numbers. We have
| ∏𝜌∈𝐼 𝑤𝜌| = ∏𝜌∈𝐾 |𝑤𝜌|.

Proof.

Lemma 294 (B modulus). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. If 𝒦𝑓(𝑅1)
if finite, then 𝑧 ∈ 𝔻𝑅 ∖ 𝒦𝑓(𝑅1), we have

|𝐵𝑓(𝑧)| = |𝑓(𝑧)| ∏
𝜌∈𝒦𝑓(𝑅1)

∣ (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝜌

∣

.

Proof. By theorem 279 and theorem 293 with 𝐼 = 𝒦𝑓(𝑅1) and 𝑤𝜌 = ( 𝑅−𝑧 ̄𝜌/𝑅
𝑧−𝜌 )𝑚𝜌 .

Lemma 295 (Abs power). For 𝑛 ∈ ℕ and 𝑤 ∈ ℂ, we have |𝑤𝑛| = |𝑤|𝑛.

Proof.

Lemma 296 (Power mod). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) ≠ 0. Then ∣ ( 𝑅−𝑧 ̄𝜌/𝑅

𝑧−𝜌 )
𝑚𝜌 ∣ = ∣ 𝑅−𝑧 ̄𝜌/𝑅

𝑧−𝜌 ∣
𝑚𝜌 .

Proof. By theorem 295 with 𝑛 = 𝑚𝜌 and 𝑤 = 𝑅−𝑧 ̄𝜌/𝑅
𝑧−𝜌 .

Lemma 297 (B modulus). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. If 𝒦𝑓(𝑅1)
if finite, then |𝐵𝑓(𝑧)| = |𝑓(𝑧)| ∏𝜌∈𝒦𝑓(𝑅1) ∣ 𝑅−𝑧 ̄𝜌/𝑅

𝑧−𝜌 ∣
𝑚𝜌 .

Proof. By theorems 294 and 296.

Lemma 298 (B at zero). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0.
Then |𝐵𝑓(0)| = |𝑓(0)| ∏𝜌∈𝒦𝑓(𝑅1) ∣ 𝑅

−𝜌 ∣𝑚𝜌 |.

Proof. By evaluating the expression in theorem 294 at 𝑧 = 0.

Lemma 299 (Abs division). Let 𝑤1, 𝑤2 ∈ ℂ with 𝑤2 ≠ 0. We have |𝑤1/𝑤2| = |𝑤1|/|𝑤2|.
Proof.

Lemma 300 (Abs neg). Let 𝑤 ∈ ℂ. We have | − 𝑤| = |𝑤|.
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Proof.

Lemma 301 (Abs ratio). Let 𝑅 > 0 and 𝜌 ∈ ℂ with 𝜌 ≠ 0. We have | 𝑅
−𝜌 | = |𝑅|/|𝜌|.

Proof. By theorems 285, 299 and 300 with 𝑤1 = 𝑅 and 𝜌.

Lemma 302 (B zero form). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) ≠ 0. Then |𝐵𝑓(0)| = |𝑓(0)| ∏𝜌∈𝒦𝑓(𝑅1)(|𝑅|/|𝜌|)𝑚𝜌 .

Proof. By applying theorems 285 and 301 to the expression in theorem 298.

Lemma 303 (Abs positive). Let 𝑥 ∈ ℝ. If 𝑥 > 0, then |𝑥| = 𝑥.

Proof.

Lemma 304 (B zero form). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) ≠ 0. Then |𝐵𝑓(0)| = |𝑓(0)| ∏𝜌∈𝒦𝑓(𝑅1)(𝑅/|𝜌|)𝑚𝜌 .

Proof. By applying theorem 303 with 𝑥 = 𝑅 > 0 to the expression in theorem 302.

Lemma 305 (Prod inequality). Let 𝐾 be a finite set, 𝑎 ∶ 𝐾 → ℝ, and 𝑏 ∶ 𝐾 → ℝ. If 0 ≤ 𝑎𝜌 ≤ 𝑏𝜌
for all 𝜌 ∈ 𝐾, then ∏𝜌∈𝐾 𝑎𝜌 ≤ ∏𝜌∈𝐾 𝑏𝜌.

Proof.

Lemma 306 (Power bound). Let 𝑛 ∈ ℕ. If 𝑐 > 1 and 𝑛 ≥ 1, then 𝑐 ≤ 𝑐𝑛.

Proof.

Lemma 307 (Power one). Let 𝑛 ∈ ℕ. If 𝑐 ≥ 1 and 𝑛 ≥ 1, then 1 ≤ 𝑐𝑛.

Proof. Apply theorem 306, and then assumption 1 ≤ 𝑐.

Lemma 308 (Product power). Let 𝐾 be a finite set. If 𝑐𝜌 ≥ 1, 𝑛𝜌 ∈ ℕ, and 𝑛𝜌 ≥ 1 for all
𝜌 ∈ 𝐾, then ∏𝜌∈𝐾 𝑐𝑛𝜌

𝜌 ≥ ∏𝜌∈𝐾 1.

Proof. By theorem 305 𝑐𝜌 ≤ 𝑐𝑛𝜌
𝜌 . Then apply theorem 306 with 𝑎𝜌 = 𝑐𝜌, 𝑏𝜌 = 𝑐𝑛𝜌

𝜌 .

Lemma 309 (Product one). Let 𝐾 be a finite set. Then ∏𝜌∈𝐾 1 = 1.

Proof.

Lemma 310 (Power bound). Let 𝐾 be a finite set. If 𝑐𝜌 ≥ 1, 𝑛𝜌 ∈ ℕ, and 𝑛𝜌 ≥ 1 for all 𝜌 ∈ 𝐾,
then ∏𝜌∈𝐾 𝑐𝑛𝜌

𝜌 ≥ 1.

Proof. By theorems 308 and 309.

Lemma 311 (Modulus bound). Let 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) = 1. Then ∏𝜌∈𝒦𝑓(𝑅1)(3/2)𝑚𝜌 ≥ 1.

Proof. First 𝑚𝜌 ∈ ℕ and 𝑚𝜌 ≥ 1 by theorems 251 and 252. Also 𝒦𝑓(𝑅1) is finite by theorem 249.
Now apply theorem 310 with 𝐾 = 𝒦𝑓(𝑅1), 𝑏𝜌 = 3/2, and 𝑛 = 𝑚𝜌.

Lemma 312 (B analytic). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) ≠ 0. Then 𝐵𝑓(𝑧) is AnalyticOnNhd 𝔻𝑅.
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Proof. By theorem 268.

Lemma 313 (Boundary mod). Let 𝑅 > 0 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. Then |𝐵𝑓(𝑧)| =
|𝑓(𝑧)| for all |𝑧| = 𝑅.

Proof.

Lemma 314 (Boundary bound). Let 𝐵 > 1, 0 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. If
|𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅 then |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| = 𝑅.

Proof. By theorem 313 and the hypothesis |𝑓(𝑧)| ≤ 𝐵.

Lemma 315 (Max modulus). Let 𝐵 > 1, 0 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. If
𝐵𝑓(𝑧) is AnalyticOnNhd 𝔻𝑅 and |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| = 𝑅, then |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| ≤ 𝑅.

Proof. By applying theorem 110 with ℎ(𝑧) = 𝐵𝑓(𝑧).
Lemma 316 (Disk bound). Let 𝐵 > 1, 0 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1. If |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| = 𝑅, then |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| ≤ 𝑅.

Proof. By theorem 312 and theorem 315.

Lemma 317 (Disk bound). Let 𝐵 > 1, 0 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1. If |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| ≤ 𝑅.

Proof. By theorem 314 and theorem 316.

Lemma 318 (Zero bound). Let 𝐵 > 1, 0 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1. If |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then |𝐵𝑓(0)| ≤ 𝐵.

Proof. By evaluating the inequality in theorem 317 at 𝑧 = 0.

Lemma 319 (Combine bounds). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd
𝔻1 with 𝑓(0) = 1. If |𝐵𝑓(0)| ≤ 𝐵 then (3/2)∑𝜌∈𝒦𝑓(𝑅1) 𝑚𝜌 ≤ 𝐵.

Proof.

Lemma 320 (Jensen form). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1. If 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then (3/2)∑𝜌∈𝒦𝑓(𝑅1) 𝑚𝜌 ≤ 𝐵.

Proof. By theorem 318 and theorem 319.

Lemma 321 (Log monotone). Let 𝑥, 𝑦 ∈ ℝ. If 0 < 𝑥 ≤ 𝑦, then log 𝑥 ≤ log 𝑦.

Proof.

Lemma 322 (Jensen log). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1. If 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then ∑𝜌∈𝒦𝑓(𝑅1) 𝑚𝜌 log(3/2) ≤ log 𝐵.

Proof. By applying theorem 321 to the inequality in theorem 320.

Lemma 323 (Three exceeds e). We have 3 > exp(1).
Proof.

Lemma 324 (Multiplicity bound). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ be a function that
is AnalyticOnNhd 𝔻1. If 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then ∑𝜌∈𝒦𝑓(𝑅1) 𝑚𝜌 ≤ log 𝐵

log(𝑅/𝑅1) .
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Proof. Note log(𝑅/𝑅1) > 0 since 𝑅/𝑅1 > 1. By theorem 322, and then divide both sides by
log(𝑅/𝑅1).
Lemma 325 (Sum inequality). Let 𝐾 be a finite set, 𝑎 ∶ 𝐾 → ℝ, and 𝑏 ∶ 𝐾 → ℝ. If 𝑎𝜌 ≤ 𝑏𝜌 for
all 𝜌 ∈ 𝐾, then ∑𝜌∈𝐾 𝑎𝜌 ≤ ∑𝜌∈𝐾 𝑏𝜌.

Proof.

Lemma 326 (Multiplicity one). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ be a function that
is AnalyticOnNhd 𝔻1. Then ∑𝜌∈𝒦𝑓(𝑅1) 1 ≤ ∑𝜌∈𝒦𝑓(𝑅1) 𝑚𝜌.

Proof. 𝒦𝑓(𝑅1) is finite by theorem 249. Now apply theorems 252 and 325 with 𝐾 = 𝒦𝑓(𝑅1),
𝑎𝜌 = 1, and 𝑏𝜌 = 𝑚𝜌.

Lemma 327 (Ones bound). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1. If 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then ∑𝜌∈𝒦𝑓(𝑅1) 1 ≤ log 𝐵

log(𝑅/𝑅1) .

Proof. By theorems 324 and 326.

Lemma 328 (Count identity). Let 𝑆 be a finite set. Then ∑𝑠∈𝑆 1 = |𝑆|.
Proof.

Lemma 329 (Zeros bound). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1. If 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then |𝒦𝑓(𝑅1)| ≤ log 𝐵

log(𝑅/𝑅1) .

Proof. 𝒦𝑓(𝑅1) is finite by theorem 249. Now apply theorems 327 and 328 with 𝑆 = 𝒦𝑓(𝑅1)

2.3 Log 𝐿𝑓

Definition 330 (Log function). Let 0 < 𝑅 < 1, 𝐵 > 1, and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) = 1. Define 𝐿𝑓(𝑧) = 𝐽𝐵𝑓

(𝑧) from theorem 238, where 𝐵𝑓 from
theorem 275.

Lemma 331 (Disk analytic). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1. Then 𝐵𝑓(𝑧) is AnalyticOnNhd 𝔻𝑅.

Proof. By theorems 268 and 273

Lemma 332 (Never zero). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ 𝔻1 → ℂ be a function that is
AnalyticOnNhd 𝔻1. Then 𝐵𝑓(𝑧) ≠ 0 for all 𝑧 ∈ 𝔻𝑅1

.

Proof. By theorems 272 and 274

Lemma 333 (B zero). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ be a function that is AnalyticOnNhd
𝔻1. Then 𝐵𝑓(0) ≠ 0.

Proof. By theorem 332 with 𝑧 = 0.

Lemma 334 (Lf analytic). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) = 1. Then 𝐿𝑓(𝑧) is AnalyticOnNhd 𝔻𝑟.

Proof. By theorems 238 and 330.
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Lemma 335 (Lf at zero). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ be a function that is Analyti-
cOnNhd 𝔻1 with 𝑓(0) = 1. We have 𝐿𝑓(0) = 0.

Proof. By theorems 238 and 330.

Lemma 336 (Real part diff). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ be a function that is
AnalyticOnNhd 𝔻1 with 𝑓(0) = 1. Then ℜ(𝐿𝑓(𝑧)) = log |𝐵𝑓(𝑧)| − log |𝐵𝑓(0)| on 𝔻𝑟.

Proof. By theorems 238 and 330 and theorem 237

Lemma 337 (Log bound). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. If
0 < |𝐵𝑓(𝑧)| and |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| ≤ 𝑅1, then log |𝐵𝑓(𝑧)| ≤ log 𝐵 for all |𝑧| ≤ 𝑅1.

Proof. By theorem 321 with 𝑥 = |𝐵𝑓(𝑧)| and 𝑦 = 𝐵.

Lemma 338 (Log bound). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. If
|𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| ≤ 𝑅, then log |𝐵𝑓(𝑧)| ≤ log 𝐵 for all |𝑧| ≤ 𝑅1.

Proof. By theorems 332 and 337.

Lemma 339 (Log bound). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. If
|𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then log |𝐵𝑓(𝑧)| ≤ log 𝐵 for all |𝑧| ≤ 𝑅1.

Proof. By theorems 317 and 338.

Lemma 340 (Log nonnegative). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) = 1. Then log |𝐵𝑓(0)| ≥ 0.

Proof. By theorem 321 with 𝑥 = 1 and 𝑦 = |𝐵𝑓(0)|, giving log |𝐵𝑓(0)| ≥ log(1) = 0.

Lemma 341 (Real part bound). Let 𝐵 > 1, 0 < 𝑟 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd
𝔻1. If 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then ℜ(𝐿𝑓(𝑧)) ≤ log 𝐵 for all |𝑧| ≤ 𝑟.

Proof. By theorems 336, 339 and 340.

Lemma 342 (BC inequality). Let 𝑀 > 0 and 0 < 𝑟1 < 𝑟 < 1. Let 𝐿 be analytic on |𝑧| ≤ 𝑟 such
that 𝐿(0) = 0 and suppose ℜ(𝐿(𝑧)) ≤ 𝑀 for all |𝑧| ≤ 𝑟. Then for any |𝑧| ≤ 𝑟1,

|𝐿′(𝑧)| ≤ 16𝑀𝑟2

(𝑟 − 𝑟1)3 .

Proof. By theorem 198.

Lemma 343 (Apply BC). Let 𝐵 > 1, 0 < 𝑟1 < 𝑟 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd
𝔻1. If 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅. For any |𝑧| ≤ 𝑟1

|𝐿′
𝑓(𝑧)| ≤ 16 log(𝐵)𝑟2

(𝑟 − 𝑟1)3 .

Proof. By theorem 342 with 𝑟 ∶= 𝑟, 𝑟1 ∶= 𝑟1, 𝐿(𝑧) = 𝐿𝑓(𝑧) and 𝑀 = log 𝐵, using theorems 334,
335 and 341.
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2.4 Log derivative 𝐿′
𝑓 expansion

Lemma 344 (Constant rule). Let 𝑎 ∈ ℂ with 𝑎 ≠ 0 and 𝑔 ∶ 𝐷1 → ℂ AnalyticOnNhd 𝔻1. Then
logDeriv(𝑎 ⋅ 𝑔(𝑧)) = logDeriv(𝑔(𝑧)).
Proof. Mathlib: logDeriv_const_mul

Lemma 345 (One minus B). Let 0 < 𝑅 < 1 and 𝑓 ∶ 𝔻1 → ℂ AnalyticOnNhd 𝔻1 with 𝑓(0) = 1.
Then 𝐵𝑓(0) ≠ 0 and 1/𝐵𝑓(0) ≠ 0.

Proof. By theorem 331 and theorem 333

Lemma 346 (Derivative form). Let 0 < 𝑅 < 1 and 𝑓 ∶ 𝔻1 → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) = 1. We have logDeriv(𝐵𝑓(𝑧)/𝐵𝑓(0)) = logDeriv(𝐵𝑓(𝑧)).
Proof. By theorems 344 and 345 with 𝑔(𝑧) = 𝐵𝑓(𝑧) and 𝑎 = 1/𝐵𝑓(0).
Lemma 347 (Product rule). Let 𝑓, 𝑔 be functions differentiableAt 𝑧 with 𝑓(𝑧), 𝑔(𝑧) ≠ 0. Then
logDeriv(𝑓 ⋅ 𝑔) = logDeriv(𝑓) + logDeriv(𝑔) at 𝑧.

Proof. Mathlib: logDeriv_mul

Lemma 348 (Product sum). Let 𝐾 be a finite set and {𝑔𝜌(𝑧)}𝜌∈𝐾 be a collection of functions dif-
ferentiableAt 𝑧 with 𝑔𝜌(𝑧) ≠ 0 for all 𝜌 ∈ 𝐾. Then logDeriv(∏𝜌∈𝐾 𝑔𝜌(𝑧)) = ∑𝜌∈𝐾 logDeriv(𝑔𝜌(𝑧)).

Proof. Mathlib: logDeriv_prod

Lemma 349 (Quotient rule). Let ℎ, 𝑔 be functions differentiableAt 𝑧 with ℎ(𝑧), 𝑔(𝑧) ≠ 0. Then
logDeriv(ℎ/𝑔) = logDeriv(ℎ) − logDeriv(𝑔) at 𝑧.

Proof. Mathlib: logDeriv_div

Lemma 350 (Power rule). Let 𝑚 ∈ ℕ and let 𝑔 be a function differentiableAt 𝑧. Then
logDeriv(𝑔(𝑧)𝑚) = 𝑚 ⋅ logDeriv(𝑔(𝑧)).
Proof. Mathlib: logDeriv_fun_pow

Lemma 351 (Difference nonzero). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd

𝔻1 with 𝑓(0) = 1. Then for any 𝜌 ∈ 𝒦𝑓(𝑅1), the function 𝑧 ↦ 𝑧 − 𝜌 is never equal to zero, and
differentiableAt 𝑧 for all 𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1).
Proof. By definition 𝑧 ∉ 𝒦𝑓(𝑅1) and 𝜌 ∈ 𝒦𝑓(𝑅1). This implies that 𝑧 ≠ 𝜌, and therefore
𝑧 − 𝜌 ≠ 0. The function 𝑧 ↦ 𝑧 − 𝜌 is a linear function, therefore differentiableAt 𝑧.

Lemma 352 (Numerator nonzero). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd

𝐷𝑅1
with 𝑓(0) = 1. Then for any 𝜌 ∈ 𝒦𝑓(𝑅1), the function 𝑧 ↦ 𝑅 − ̄𝜌𝑧/𝑅 is never equal to

zero, and differentiableAt 𝑧 for all 𝑧 ∈ 𝔻1.

Proof. 𝑅 − ̄𝜌𝑧/𝑅 ≠ 0 for all 𝑧 ∈ 𝐷𝑅 ∖ 𝒦𝑓(𝑅1).
The function 𝑅 − ̄𝜌𝑧/𝑅 is a linear function, therefore differentiableAt 𝑧.

Lemma 353 (Fraction nonzero). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1

with 𝑓(0) = 1. Then for any 𝜌 ∈ 𝒦𝑓(𝑅1), the function 𝑧 ↦ 𝑅− ̄𝜌𝑧/𝑅
𝑧−𝜌 is never equal to zero, and

differentiableAt 𝑧 for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1).
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Proof. By theorems 351 and 352

Lemma 354 (Power nonzero). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1

with 𝑓(0) = 1. Then for any 𝜌 ∈ 𝒦𝑓(𝑅1), the function 𝑧 ↦ ( 𝑅− ̄𝜌𝑧/𝑅
𝑧−𝜌 )𝑚𝜌,𝑓 is never equal to zero,

and differentiableAt 𝑧 for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1).

Proof. By theorem 353. Note 𝑚𝜌,𝑓 ∈ ℕ.

Lemma 355 (Product nonzero). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd

𝔻1 with 𝑓(0) = 1. Then the function 𝑧 ↦ ∏𝜌∈𝒦𝑓(𝑅1)(
𝑅− ̄𝜌𝑧/𝑅

𝑧−𝜌 )𝑚𝜌,𝑓 is never equal to zero, and
differentiableAt 𝑧 for all 𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1).
Proof. By theorem 354. Note 𝒦𝑓(𝑅1) is finite by theorem 249

Lemma 356 (Outside zeros). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1

with 𝑓(0) = 1. Then the function 𝑓(𝑧) is never equal to zero, and differentiableAt 𝑧 for all
𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1).
Proof. By definition of 𝒦𝑓(𝑅1) in theorem 240.

Lemma 357 (Outside zeros). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1

with 𝑓(0) = 1. Then the function 𝐵𝑓(𝑧) is never equal to zero, and differentiableAt 𝑧 for all
𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1).
Proof. By theorems 355 and 356, recalling theorem 275.

Lemma 358 (Log sum). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with

𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1) we have

logDeriv ⎛⎜
⎝

𝑓(𝑧) ∏
𝜌∈𝒦𝑓(𝑅1)

(𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝜌,𝑓 ⎞⎟
⎠

= logDeriv(𝑓(𝑧))+logDeriv ⎛⎜
⎝

∏
𝜌∈𝒦𝑓(𝑅1)

(𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝜌,𝑓 ⎞⎟
⎠

.

Proof. By theorem 347 with 𝑔(𝑧) = ∏𝜌∈𝒦𝑓(𝑅1) ( 𝑅−𝑧 ̄𝜌/𝑅
𝑧−𝜌 )

𝑚𝜌,𝑓 .
Note diffAt, nonzero conditions hold by theorem 355.

Lemma 359 (Log sum). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with

𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1) we have

logDeriv(𝐵𝑓(𝑧)) = logDeriv(𝑓(𝑧)) + logDeriv ⎛⎜
⎝

∏
𝜌∈𝒦𝑓(𝑅1)

(𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝜌,𝑓 ⎞⎟
⎠

.

Proof. By theorems 275 and 358.

Lemma 360 (Fraction form). Let 𝑓 be a non-zero analytic function. Then logDeriv(𝑓(𝑧)) =
𝑓′

𝑓 (𝑧).
Proof. By definition of logDeriv in Mathlib.
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Lemma 361 (Step one). Let 0 < 𝑟 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑟 ∖ 𝒦𝑓(𝑅1) we have

𝐿′
𝑓(𝑧) = 𝑓 ′

𝑓 (𝑧) + logDeriv ⎛⎜
⎝

∏
𝜌∈𝒦𝑓(𝑅1)

(𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝜌,𝑓 ⎞⎟
⎠

Proof. By theorem 346, theorem 359, and theorem 360.

Lemma 362 (Product sum). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with

𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1) we have

logDeriv ⎛⎜
⎝

∏
𝜌∈𝒦𝑓(𝑅1)

(𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝜌,𝑓 ⎞⎟
⎠

= ∑
𝜌∈𝒦𝑓(𝑅1)

logDeriv ((𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝜌,𝑓

)

Proof. By theorem 348 with 𝐾 = 𝒦𝑓(𝑅1) and 𝑔𝜌(𝑧) = ( 𝑅−𝑧 ̄𝜌/𝑅
𝑧−𝜌 )

𝑚𝜌,𝑓 .
Note 𝐾 = 𝒦𝑓(𝑅1) is finite by theorem 249. The diffAt, nonzero conditions hold by theo-

rem 354.

Lemma 363 (Power multiple). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1

with 𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1) and 𝜌 ∈ 𝒦𝑓(𝑅1) we have

logDeriv ((𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝜌,𝑓

) = 𝑚𝜌,𝑓 logDeriv (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 ) .

Proof. By theorem 350 with 𝑚 = 𝑚𝜌,𝑓 and 𝑔(𝑧) = 𝑅−𝑧 ̄𝜌/𝑅
𝑧−𝜌 . Note 𝑚𝜌,𝑓 ∈ ℕ. The diffAt, nonzero

conditions hold by theorem 353.

Lemma 364 (Sum multiple). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with

𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1) we have

logDeriv ⎛⎜
⎝

∏
𝜌∈𝒦𝑓(𝑅1)

(𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝜌,𝑓 ⎞⎟
⎠

= ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓 logDeriv (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 ) .

Proof. By theorem 362 and theorem 363.

Lemma 365 (Step two). Let 0 < 𝑟 < 𝑅1 < 𝑅, 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑟 ∖ 𝒦𝑓(𝑅1) we have

𝐿′
𝑓(𝑧) = 𝑓 ′

𝑓 (𝑧) + ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓 logDeriv (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 ) .

Proof. By theorem 361 and theorem 364.

Lemma 366 (Difference form). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1

with 𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1) and 𝜌 ∈ 𝒦𝑓(𝑅1) we have

logDeriv (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 ) = logDeriv(𝑅 − 𝑧 ̄𝜌/𝑅) − logDeriv(𝑧 − 𝜌).
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Proof. By theorem 349 with ℎ(𝑧) = 𝑅 − 𝑧 ̄𝜌/𝑅 and 𝑔(𝑧) = 𝑧 − 𝜌.
Note diffAt, nonzero conditions hold by theorems 351 and 352.

Lemma 367 (Linear rule). Let 𝑎, 𝑏 ∈ ℂ with 𝑎 ≠ 0. We have logDeriv(𝑎𝑧 + 𝑏) = 𝑎
𝑎𝑧+𝑏 at

𝑧 ≠ −𝑏/𝑎.

Proof. Note linear polynomial has derivative (𝑎𝑧 + 𝑏)′ = 𝑎.
Now unfold logDeriv definition and calculate logDeriv(𝑎𝑧 + 𝑏) = (𝑎𝑧+𝑏)′

𝑎𝑧+𝑏 = 𝑎
𝑎𝑧+𝑏 .

Lemma 368 (Denominator rule). Let 𝜌 ∈ ℂ. We have logDeriv(𝑧 − 𝜌) = 1
𝑧−𝜌 at 𝑧 ≠ 𝜌.

Proof. By theorem 367 with 𝑎 = 1 and 𝑏 = −𝜌.

Lemma 369 (Numerator rule). Let 𝑅, 𝜌 ∈ ℂ. We have logDeriv(𝑅 − 𝑧 ̄𝜌/𝑅) = − ̄𝜌/𝑅
𝑅−𝑧 ̄𝜌/𝑅 .

Proof. By theorem 367 with 𝑎 = − ̄𝜌/𝑅 and 𝑏 = 𝑅.

Lemma 370 (Rearranged form). Let 𝑅, 𝜌 ∈ ℂ. We have − ̄𝜌/𝑅
𝑅−𝑧 ̄𝜌/𝑅 = 1

𝑧−𝑅2/ ̄𝜌 .

Proof. This is an algebraic simplification. For the expression to be well-defined, we must make
some assumptions that are implicit in the context of the larger proof:

• 𝑅 ≠ 0 and ̄𝜌 ≠ 0 (which implies 𝜌 ≠ 0), so that the fractions are defined.

• The denominator 𝑅 − 𝑧 ̄𝜌/𝑅 ≠ 0.

• The denominator 𝑧 − 𝑅2/ ̄𝜌 ≠ 0.

These conditions hold in the domains where this lemma is applied.
Our goal is to show the equality of the two fractions. We will start with the left-hand side

(LHS) and manipulate it to obtain the right-hand side (RHS). The strategy is to multiply the
numerator and the denominator of the LHS by the same non-zero quantity, chosen to simplify
the expression. A suitable choice is the factor −𝑅/ ̄𝜌.

Let’s start with the LHS:
LHS = − ̄𝜌/𝑅

𝑅 − 𝑧 ̄𝜌/𝑅
Now, we multiply the numerator and the denominator by −𝑅/ ̄𝜌:

LHS = (− ̄𝜌/𝑅) ⋅ (−𝑅/ ̄𝜌)
(𝑅 − 𝑧 ̄𝜌/𝑅) ⋅ (−𝑅/ ̄𝜌)

Let’s simplify the new numerator and denominator separately.
Numerator simplification:

(− ̄𝜌/𝑅) ⋅ (−𝑅/ ̄𝜌) = − ̄𝜌
𝑅 ⋅ −𝑅

̄𝜌 = (− ̄𝜌)(−𝑅)
𝑅 ̄𝜌 = ̄𝜌𝑅

𝑅 ̄𝜌 = 1
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Denominator simplification: We distribute the factor (−𝑅/ ̄𝜌) across the terms in the
denominator:

(𝑅 − 𝑧 ̄𝜌/𝑅) ⋅ (−𝑅/ ̄𝜌) = 𝑅 ⋅ (−𝑅/ ̄𝜌) − (𝑧 ̄𝜌/𝑅) ⋅ (−𝑅/ ̄𝜌)

= −𝑅2

̄𝜌 − (𝑧 ̄𝜌
𝑅 ⋅ −𝑅

̄𝜌 )

= −𝑅2

̄𝜌 − (𝑧 ⋅ ̄𝜌(−𝑅)
𝑅 ̄𝜌 )

= −𝑅2

̄𝜌 − (𝑧 ⋅ (−1))

= −𝑅2

̄𝜌 + 𝑧

= 𝑧 − 𝑅2

̄𝜌

Conclusion: Substituting the simplified numerator and denominator back into the fraction,
we get:

LHS = 1
𝑧 − 𝑅2/ ̄𝜌

This is exactly the RHS of the equation we wanted to prove.

Lemma 371 (Numerator form). Let 𝑅, 𝜌 ∈ ℂ. We have logDeriv(𝑅 − 𝑧 ̄𝜌/𝑅) = 1
𝑧−𝑅2/ ̄𝜌 .

Proof. By theorems 369 and 370

Lemma 372 (Diff fraction). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1. For

𝜌 ∈ 𝒦𝑓(𝑅1), we have logDeriv ( 𝑅−𝑧 ̄𝜌/𝑅
𝑧−𝜌 ) = 1

𝑧−𝑅2/ ̄𝜌 − 1
𝑧−𝜌 .

Proof. The proof proceeds by first applying the division rule for the logarithmic derivative and
then evaluating each resulting term. This is valid for any 𝑧 ∈ 𝔻𝑅1

∖𝒦𝑓(𝑅1) and any 𝜌 ∈ 𝒦𝑓(𝑅1).
Step 1: Apply the division rule for logDeriv We use theorem 366, which is an ap-

plication of the general rule logDeriv(ℎ/𝑔) = logDeriv(ℎ) − logDeriv(𝑔). Let ℎ(𝑧) = 𝑅 − 𝑧 ̄𝜌/𝑅
and 𝑔(𝑧) = 𝑧 − 𝜌. To apply this rule, we must ensure that ℎ(𝑧) and 𝑔(𝑧) are differentiable and
non-zero at 𝑧.

• For ℎ(𝑧) = 𝑅−𝑧 ̄𝜌/𝑅: Theorem 352 confirms that this function is differentiable and non-zero
for all 𝑧 ∈ 𝔻1, which includes our domain of interest.

• For 𝑔(𝑧) = 𝑧 − 𝜌: Theorem 351 confirms that this function is differentiable and non-zero
for all 𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1), given 𝜌 ∈ 𝒦𝑓(𝑅1).
Since the conditions are met, we can apply theorem 366 to get:

logDeriv (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 ) = logDeriv(𝑅 − 𝑧 ̄𝜌/𝑅) − logDeriv(𝑧 − 𝜌).

Step 2: Evaluate the first term, logDeriv(𝑅 − 𝑧 ̄𝜌/𝑅) We use theorem 371. This lemma
states:

logDeriv(𝑅 − 𝑧 ̄𝜌/𝑅) = 1
𝑧 − 𝑅2/ ̄𝜌 .
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This is valid provided 𝑅 ≠ 0 and 𝜌 ≠ 0, which are true under our assumptions (0 < 𝑅 < 1 and
𝜌 ∈ 𝒦𝑓(𝑅1) implies 𝜌 ≠ 0 as 𝑓(0) = 1).

Step 3: Evaluate the second term, logDeriv(𝑧 − 𝜌) We use theorem 368. This lemma
states:

logDeriv(𝑧 − 𝜌) = 1
𝑧 − 𝜌 .

This is valid for 𝑧 ≠ 𝜌. This condition is satisfied, as our domain for 𝑧 is 𝔻𝑅1
∖ 𝒦𝑓(𝑅1) and 𝜌 is

an element of 𝒦𝑓(𝑅1), so 𝑧 cannot be equal to 𝜌.
Step 4: Substitute the results back Now we substitute the expressions found in Step 2

and Step 3 into the equation from Step 1:

logDeriv (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 ) = ( 1

𝑧 − 𝑅2/ ̄𝜌) − ( 1
𝑧 − 𝜌) .

This gives the final desired formula.

Lemma 373 (Step three). Let 0 < 𝑟 < 𝑅1 < 𝑅, 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑟 ∖𝒦𝑓(𝑅1) we have 𝐿′

𝑓(𝑧) = 𝑓′

𝑓 (𝑧)+∑𝜌∈𝒦𝑓(𝑅1) 𝑚𝜌,𝑓 ( 1
𝑧−𝑅2/ ̄𝜌 − 1

𝑧−𝜌 ).

Proof. The proof is a direct substitution into a previously established formula. The assumptions
on 𝑅 and 𝑓 are used to justify the application of the necessary lemmas. The result holds for all
𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1).
Step 1: Recall the formula for 𝐿′

𝑓(𝑧) from theorem 365 Theorem 365 provides an
expression for 𝐿′

𝑓(𝑧) under the same assumptions as the current lemma. The formula is:

𝐿′
𝑓(𝑧) = 𝑓 ′

𝑓 (𝑧) + ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓 logDeriv (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 ) .

This equation holds for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1).

Step 2: Find a replacement for the logDeriv term Our goal is to replace the term
logDeriv ( 𝑅−𝑧 ̄𝜌/𝑅

𝑧−𝜌 ) inside the summation. We look to theorem 372. This lemma gives the fol-
lowing identity for each 𝜌 ∈ 𝒦𝑓(𝑅1) and for all 𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1):

logDeriv (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 ) = 1

𝑧 − 𝑅2/ ̄𝜌 − 1
𝑧 − 𝜌 .

Step 3: Substitute the expression into the formula for 𝐿′
𝑓(𝑧) We now substitute the

expression from Step 2 into the formula from Step 1. The substitution is valid because the
domains for 𝑧 and 𝜌 match in both lemmas. Starting with the formula from Step 1:

𝐿′
𝑓(𝑧) = 𝑓 ′

𝑓 (𝑧) + ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓 (logDeriv (𝑅 − 𝑧 ̄𝜌/𝑅
𝑧 − 𝜌 )) .

We replace the parenthesized term with its equivalent from Step 2:

𝐿′
𝑓(𝑧) = 𝑓 ′

𝑓 (𝑧) + ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓 ( 1
𝑧 − 𝑅2/ ̄𝜌 − 1

𝑧 − 𝜌) .

This is the final expression we aimed to prove.
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Lemma 374 (Sum difference). Let 𝐾 be a finite set and 𝑎, 𝑏 ∶ 𝐾 → ℂ. Then ∑𝜌∈𝐾(𝑎𝜌 − 𝑏𝜌) =
∑𝜌∈𝐾 𝑎𝜌 − ∑𝜌∈𝐾 𝑏𝜌.

Proof. By the distributive property of summation.

Lemma 375 (Sum rearranged). Let 0 < 𝑅 < 1, 𝑅1 = 2
3 𝑅, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1

with 𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑅1
∖ 𝒦𝑓(𝑅1) we have

∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓 ( 1
𝑧 − 𝑅2/ ̄𝜌 − 1

𝑧 − 𝜌) = ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝑅2/ ̄𝜌 − ∑

𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝜌 .

Proof. By theorem 374. Note 𝐾 = 𝒦𝑓(𝑅1) is finite by theorem 249

Lemma 376 (Final formula). Let 0 < 𝑟 < 𝑅1 < 𝑅, 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1
with 𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑟 ∖ 𝒦𝑓(𝑅1) we have

𝐿′
𝑓(𝑧) = 𝑓 ′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝜌 + ∑

𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝑅2/ ̄𝜌 .

Proof. By theorem 373 and theorem 375.

Lemma 377 (Rearranged deriv). Let 0 < 𝑟 < 𝑅1 < 𝑅, 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd
𝔻1 with 𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑟 ∖ 𝒦𝑓(𝑅1) we have

𝑓 ′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝜌 = 𝐿′

𝑓(𝑧) − ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝑅2/ ̄𝜌 .

Proof. By algebraic rearrangement of the equality in theorem 376.

Lemma 378 (Triangle sum). Let 𝑤1, 𝑤2 ∈ ℂ. We have |𝑤1 − 𝑤2| ≤ |𝑤1| + |𝑤2|.
Proof. By the triangle inequality.

Lemma 379 (Setup inequality). Let 0 < 𝑟 < 𝑅1 < 𝑅, 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd
𝔻1 with 𝑓(0) = 1. Then for all 𝑧 ∈ 𝔻𝑟 ∖ 𝒦𝑓(𝑅1) we have

∣ 𝑓
′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝜌 ∣ ≤ |𝐿′

𝑓(𝑧)| + ∣ ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝑅2/ ̄𝜌 ∣ .

Proof. By applying the modulus and theorem 378 to the equality in theorem 377.

Lemma 380 (Step two). Let 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with 𝑓(0) = 1.
Then for all 𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1) we have

∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
|𝑧 − 𝑅2/ ̄𝜌| ≤ 1

𝑅2/𝑅1 − 𝑅1
∑

𝜌∈𝒦𝑓(𝑅1)
𝑚𝜌,𝑓 .

Proof. Note 𝐾 = 𝒦𝑓(𝑅1) is finite by theorem 249.
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Lemma 381 (Final sum). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1 and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1 with
𝑓(0) = 1. If |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then for all 𝑧 ∈ 𝔻𝑅1

∖ 𝒦𝑓(𝑅1) we have

∣ ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝑅2/ ̄𝜌 ∣ ≤ log 𝐵

(𝑅2/𝑅1 − 𝑅1) log(𝑅/𝑅1) .

Proof. By theorem 380, and theorem 324.

Lemma 382 (Final bound). Let 𝐵 > 1, 0 < 𝑟1 < 𝑟 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ
AnalyticOnNhd 𝔻1 with 𝑓(0) = 1. If |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then for all 𝑧 ∈ 𝔻𝑟1

∖ 𝒦𝑓(𝑅1) we
have

∣ 𝑓
′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝜌 ∣ ≤ 16 log(𝐵)𝑟2

(𝑟 − 𝑟1)3 + log 𝐵
(𝑅2/𝑅1 − 𝑅1) log(𝑅/𝑅1) .

Proof. By theorem 379, theorem 381, and theorem 343.

Lemma 383 (Final bound). Let 𝐵 > 1, 0 < 𝑟1 < 𝑟 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ
AnalyticOnNhd 𝔻1 with 𝑓(0) = 1. If |𝑓(𝑧)| ≤ 𝐵 on |𝑧| ≤ 𝑅, then for all 𝑧 ∈ 𝔻𝑟1

∖ 𝒦𝑓(𝑅1) we
have

∣ 𝑓
′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅1)

𝑚𝜌,𝑓
𝑧 − 𝜌 ∣ ≤ ( 16𝑟2

(𝑟 − 𝑟1)3 + 1
(𝑅2/𝑅1 − 𝑅1) log(𝑅/𝑅1)) log 𝐵.

Proof. By theorem 382, factoring out log 𝐵 from both terms.
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Chapter 3

Riemann Zeta Function

3.1 Zeta lower bound
Definition 384 (Prime set). Let 𝒫 be Nat.Primes

Lemma 385 (Prime decay). For 𝑝 ∈ 𝒫 and 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have |𝑝−𝑠| < 1.

Proof. Let 𝜎 = ℜ(𝑠). By hypothesis, 𝜎 > 1. By Lemma 404, we have |𝑝−𝑠| = 𝑝−𝜎. Since 𝑝 ∈ 𝒫,
we have 𝑝 ≥ 2. As 𝜎 > 1, it follows that 𝑝𝜎 > 𝑝1 ≥ 2. Therefore, 𝑝−𝜎 = 1/𝑝𝜎 < 1.

Lemma 386 (Euler product). For 𝑠 ∈ ℂ with ℜ(𝑠) > 1, the function 𝑤𝑠(𝑝) = (1 − 𝑝−𝑠)−1 is
multipliable, and we have 𝜁(𝑠) = ∏′

𝑝∈𝒫(1 − 𝑝−𝑠)−1.

Proof. Mathlib: riemannZeta_eulerProduct_hasProd, riemannZeta_eulerProduct_tprod,

Lemma 387 (Abs product). Let 𝑃 be a set and 𝑤 ∶ 𝑃 → ℂ be multipliable. Then | ∏′
𝑝∈𝑃 𝑤(𝑝)| =

∏′
𝑝∈𝑃 |𝑤(𝑝)|.

Proof. Mathlib: abs_tprod

Lemma 388 (Abs primes). For 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have | ∏′
𝑝∈𝒫(1 − 𝑝−𝑠)−1| = ∏′

𝑝∈𝒫 |(1 −
𝑝−𝑠)−1|.
Proof. By theorems 386 and 387 with 𝑃 = 𝒫 and 𝑤(𝑝) = (1 − 𝑝−𝑠)−1, which is multipiable.

Lemma 389 (Abs zeta). For 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have |𝜁(𝑠)| = ∏′
𝑝∈𝒫 |(1 − 𝑝−𝑠)−1|.

Proof. By theorems 386 and 388.

Lemma 390 (Abs inverse). For 𝑧 ∈ ℂ, if 𝑧 ≠ 0 then |𝑧−1| = |𝑧|−1.

Proof. Mathlib: abs_inv

Lemma 391 (Nonzero factor). For 𝑝 ∈ 𝒫 and 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have 1 − 𝑝−𝑠 ≠ 0.

Proof. By theorem 385.

Lemma 392 (Abs product). For 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have |𝜁(𝑠)| = ∏′
𝑝∈𝒫 |1 − 𝑝−𝑠|−1.

Proof. Apply theorem 389 and theorem 390 with 𝑧 = 1 − 𝑝−𝑠. Note 𝑧 ≠ 0 by theorem 391.
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Lemma 393 (Real double). For 𝑠 ∈ ℂ we have ℜ(2𝑠) = 2ℜ(𝑠).
Proof.

Lemma 394 (Real bound). For 𝑠 ∈ ℂ, if ℜ(𝑠) > 1 then ℜ(2𝑠) > 1.

Proof. By theorem 393 and assumption ℜ(𝑠) > 1.

Lemma 395 (Zeta ratio). For 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have 𝜁(2𝑠)
𝜁(𝑠) = ∏′

𝑝∈𝒫(1−𝑝−2𝑠)−1

∏′
𝑝∈𝒫(1−𝑝−𝑠)−1 .

Proof. Apply Lemma 386 twice, to both 𝜁(2𝑠) and 𝜁(𝑠). Use condition theorem 394.

Lemma 396 (Ratio product). Let 𝑃 be a set, and 𝑎(𝑝) ∶ 𝑃 → ℂ and 𝑏(𝑝) ∶ 𝑃 → ℂ be multipliable.
Then ∏′

𝑝∈𝑃 𝑎(𝑝)
∏′

𝑝∈𝑃 𝑏(𝑝) = ∏′
𝑝∈𝑃

𝑎(𝑝)
𝑏(𝑝) .

Proof. We proceed by cases on whether 𝑎 ever takes the value zero.
Case 1: There exists 𝑝0 ∈ 𝑃 such that 𝑎(𝑝0) = 0.
In this case, the infinite product ∏′

𝑝∈𝑃 𝑎(𝑝) contains the factor 𝑎(𝑝0) = 0, and therefore:

′
∏
𝑝∈𝑃

𝑎(𝑝) = 0

Similarly, the quotient function 𝑝 ↦ 𝑎(𝑝)/𝑏(𝑝) satisfies (𝑎/𝑏)(𝑝0) = 𝑎(𝑝0)/𝑏(𝑝0) = 0/𝑏(𝑝0) =
0, so:

′
∏
𝑝∈𝑃

𝑎(𝑝)
𝑏(𝑝) = 0

Therefore, both sides of the desired equality equal zero:

∏′
𝑝∈𝑃 𝑎(𝑝)

∏′
𝑝∈𝑃 𝑏(𝑝)

= 0
∏′

𝑝∈𝑃 𝑏(𝑝)
= 0 =

′
∏
𝑝∈𝑃

𝑎(𝑝)
𝑏(𝑝)

Case 2: For all 𝑝 ∈ 𝑃 , 𝑎(𝑝) ≠ 0.
In this case, our hypotheses are that both 𝑎 and 𝑏 are multipliable and map to non-zero

values everywhere. Our strategy is to apply Assumption tprod_div, but doing so requires
careful reasoning about the algebraic structures involved.

The Obstacle Assumption tprod_div requires the functions to map into a Commutative
Group. The field of complex numbers, ℂ, is not a commutative group under multiplication
because the element 0 lacks a multiplicative inverse. Therefore, we cannot directly apply the
theorem to our functions 𝑎 and 𝑏.

The Strategy: Lifting to the Group of Units The solution is to work within the group
of units of ℂ, denoted ℂ×, which is the set of non-zero complex numbers ℂ ∖ {0}. This set
is a commutative group under multiplication. Since we are in the case where 𝑎(𝑝) and 𝑏(𝑝) are
always non-zero, we can ”lift” our functions to have ℂ× as their codomain.

Defining the Lifted Functions We define two new unit-valued functions, 𝑢 and 𝑣:

𝑢 ∶ 𝑃 → ℂ×, 𝑢(𝑝) ∶= 𝑎(𝑝) (3.1)
𝑣 ∶ 𝑃 → ℂ×, 𝑣(𝑝) ∶= 𝑏(𝑝) (3.2)
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These functions are well-defined because our case assumption (∀𝑝, 𝑎(𝑝) ≠ 0) and the given
hypothesis (∀𝑝, 𝑏(𝑝) ≠ 0) guarantee their outputs are always in ℂ×.

Multipliability of the Lifted Functions The multipliability of 𝑢 and 𝑣 follows directly
from that of 𝑎 and 𝑏. A function’s multipliability depends on the summability of |𝑓(𝑝) − 1| over
its support. Since the values of 𝑢(𝑝) and 𝑎(𝑝) are identical (and likewise for 𝑣 and 𝑏), their
multipliability properties are preserved.

• {𝑝 ∶ 𝑢(𝑝) ≠ 1} = {𝑝 ∶ 𝑎(𝑝) ≠ 1} is countable (since 𝑎 is multipliable).

• ∑𝑝 |𝑢(𝑝) − 1| = ∑𝑝 |𝑎(𝑝) − 1| < ∞ (since 𝑎 is multipliable).

• Similarly for 𝑣 and 𝑏.

Applying the Division Theorem With 𝑢 and 𝑣 established as multipliable functions into
the commutative group ℂ×, we can now safely apply Assumption tprod_div. This gives us an
equality that holds within ℂ×:

∏′
𝑝∈𝑃 𝑢(𝑝)

∏′
𝑝∈𝑃 𝑣(𝑝)

=
′

∏
𝑝∈𝑃

𝑢(𝑝)
𝑣(𝑝) (3.3)

Returning to ℂ Our final step is to show that this equality in ℂ× implies the desired equality
in ℂ. This is true because the natural inclusion (coercion) from ℂ× to ℂ preserves the algebraic
operations of division and infinite products. Since coe(𝑢(𝑝)) = 𝑎(𝑝) and coe(𝑣(𝑝)) = 𝑏(𝑝),
applying this coercion to both sides of Equation (3.3) directly yields our goal:

∏′
𝑝∈𝑃 𝑎(𝑝)

∏′
𝑝∈𝑃 𝑏(𝑝)

=
′

∏
𝑝∈𝑃

𝑎(𝑝)
𝑏(𝑝)

In both cases, the desired equality holds.

Lemma 397 (Ratio split). For 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have ∏′
𝑝∈𝒫(1−𝑝−2𝑠)−1

∏′
𝑝∈𝒫(1−𝑝−𝑠)−1 = ∏′

𝑝∈𝒫
(1−𝑝−2𝑠)−1

(1−𝑝−𝑠)−1 .

Proof. By theorem 396 with 𝑎(𝑝) = (1 − 𝑝−2𝑠)−1 and 𝑏(𝑝) = (1 − 𝑝−𝑠)−1. Multipliability holds
by theorem 386, and use condition theorem 394.

Lemma 398 (Ratio form). For 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have 𝜁(2𝑠)
𝜁(𝑠) = ∏′

𝑝∈𝒫
(1−𝑝−2𝑠)−1

(1−𝑝−𝑠)−1 .

Proof. By theorems 395 and 397.

Lemma 399 (Diff squares). For any 𝑧 ∈ ℂ, we have (1 − 𝑧2) = (1 − 𝑧)(1 + 𝑧).
Proof. Basic algebra

Lemma 400 (Inverse ratio). For any 𝑧 ∈ ℂ. If |𝑧| < 1 then (1−𝑧2)−1

(1−𝑧)−1 = (1 + 𝑧)−1.

Proof. By theorem 399, then invert terms and simplify. Note |𝑧| < 1 implies 𝑧 ≠ ±1 so we may
invert 1 − 𝑧 and 1 + 𝑧 and 1 − 𝑧2.

Theorem 401 (Ratio identity). For 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have 𝜁(2𝑠)
𝜁(𝑠) = ∏′

𝑝∈𝒫(1 + 𝑝−𝑠)−1.

Proof. Apply Lemma 398 and Lemma 400 with 𝑧 = 𝑝−𝑠. We verify condition using theorem 385.

Lemma 402 (Three halves). We have 𝜁(3)
𝜁(3/2) = ∏′

𝑝∈𝒫(1 + 𝑝−3/2)−1.
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Proof. Apply Theorem 401 with 𝑠 = 3/2. Note ℜ(3/2) = 3/2 > 1.

Lemma 403 (Triangle abs). For any 𝑧 ∈ ℂ, we have |1 − 𝑧| ≤ 1 + |𝑧|.
Proof. By the triangle inequality, |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|. Let 𝑎 = 1 and 𝑏 = −𝑧. Then |1 − 𝑧| ≤
|1| + | − 𝑧| = 1 + |𝑧|.
Lemma 404 (Prime power). For 𝑝 ∈ 𝒫 and 𝑠 = 𝜎 + 𝑖𝑡 ∈ ℂ, we have |𝑝−𝑠| = 𝑝−𝜎.

Proof. |𝑝−𝑠| = |𝑝−𝜎−𝑖𝑡| = |𝑝−𝜎𝑝−𝑖𝑡| = |𝑝−𝜎||𝑒−𝑖𝑡 log 𝑝| = 𝑝−𝜎 ⋅ 1 = 𝑝−𝜎.

Lemma 405 (Term bound). For 𝑝 ∈ 𝒫 and 𝑡 ∈ ℝ, we have |1 − 𝑝−(3/2+𝑖𝑡)| ≤ 1 + 𝑝−3/2.

Proof. Apply Lemma 403 with 𝑧 = 𝑝−(3/2+𝑖𝑡). This gives |1 − 𝑝−(3/2+𝑖𝑡)| ≤ 1 + |𝑝−(3/2+𝑖𝑡)|. Apply
Lemma 404 with 𝜎 = 3/2 to get |𝑝−(3/2+𝑖𝑡)| = 𝑝−3/2.

Lemma 406 (Inv order). If 0 < 𝑎 ≤ 𝑏, then 𝑎−1 ≥ 𝑏−1.

Proof. Basic property of inequalities

Lemma 407 (Nonzero term). For 𝑝 ∈ 𝒫, we have 1 − 𝑝−(3/2+𝑖𝑡) ≠ 0.

Proof. We have 𝑝−(3/2+𝑖𝑡) ≠ 1 by theorem 385 with 𝑠 = 3/2 + 𝑖𝑡.
Lemma 408 (Inverse bound). For 𝑝 ∈ 𝒫 and 𝑡 ∈ ℝ, we have |1 − 𝑝−(3/2+𝑖𝑡)|−1 ≥ (1 + 𝑝−3/2)−1.

Proof. Apply theorem 405, and then theorems 406 and 407 with 𝑎 = |1 − 𝑝−(3/2+𝑖𝑡)| and 𝑏 =
1 + 𝑝−3/2.

Lemma 409 (Prod order). Let 𝑃 be a set, and 𝑎(𝑝) ∶ 𝑃 → ℂ and 𝑏(𝑝) ∶ 𝑃 → ℂ be multipliable.
If 0 < 𝑎(𝑝) ≤ 𝑏(𝑝) for all 𝑝 ∈ 𝑃 then ∏′

𝑝∈𝑃 𝑎(𝑝) ≤ ∏′
𝑝∈𝑃 𝑏(𝑝).

Proof. Mathlib: tprod_le_tprod

Lemma 410 (Zeta compare). For 𝑡 ∈ ℝ, we have ∏′
𝑝∈𝒫(1 + 𝑝−3/2)−1 ≤ ∏′

𝑝∈𝒫 |1 − 𝑝−(3/2+𝑖𝑡)|−1.

Proof. Apply theorems 408 and 409 with 𝑃 = 𝒫, 𝑎(𝑝) = (1 + 𝑝−3/2)−1, 𝑏(𝑝) = |1 − 𝑝−(3/2+𝑖𝑡)|−1.
Multipliability holds by theorem 386

Theorem 411 (Zeta lower). For any 𝑡 ∈ ℝ, we have |𝜁(3/2 + 𝑖𝑡)| ≥ 𝜁(3)
𝜁(3/2) .

Proof. From Lemma 392 with 𝑠 = 3/2 + 𝑖𝑡, the left hand side is |𝜁(3/2 + 𝑖𝑡)| = ∏′
𝑝∈𝒫 |1 −

𝑝−(3/2+𝑖𝑡)|−1. From Lemma 402, the right hand side is 𝜁(3)
𝜁(3/2) = ∏′

𝑝∈𝒫(1 + 𝑝−3/2)−1. The theorem
then follows directly from the inequality in Lemma 410.

Lemma 412 (Zeta positive). For 𝑥 ∈ ℝ, if 𝑥 > 1 then 𝜁(𝑥) ∈ ℝ and 𝜁(𝑥) > 0.

Proof. By zeta_eq_tsum_one_div_nat_add_one_cpow, since 𝑥 > 1 we have 𝜁(𝑥) = ∑∞
𝑛=1 𝑛−𝑥.

Then note 𝑛−𝑥 is positive real for all 𝑛, so the sum is also positive real.

Lemma 413 (Ratio positive). We have 𝜁(3)
𝜁(3/2) > 0.

Proof. By theorem 412 applied twice, to both 𝑥 = 3 and 𝑥 = 3/2.

Lemma 414 (Fixed lower). There exists 𝑎 > 0 such that for any 𝑡 ∈ ℝ, we have |𝜁(3/2+𝑖𝑡)| ≥ 𝑎.

Proof. By theorem 411 with 𝑎 = 𝜁(3)
𝜁(3/2) . Note 𝑎 > 0 by theorem 413.
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3.2 Zeta bound
Lemma 415 (Series form). For 𝑠 ∈ ℂ with ℜ(𝑠) > 1, we have 𝜁(𝑠) = ∑∞

𝑛=1 𝑛−𝑠.

Proof. Mathlib: zeta_eq_tsum_one_div_nat_add_one_cpow

Definition 416 (Partial sum). For 𝑠 ∈ ℂ and 𝑁 ∈ ℕ, define the partial sum 𝜁𝑁(𝑠) = ∑𝑁
𝑛=1 𝑛−𝑠.

Lemma 417 (Abel sum). Let 𝑎𝑛 ∈ ℂ and let 𝑓 ∶ ℝ → ℂ be a continuously differentiable function.
Let 𝐴(𝑢) = ∑⌊𝑢⌋

𝑛=1 𝑎𝑛. Then for any integer 𝑁 ≥ 1,

𝑁
∑
𝑛=1

𝑎𝑛𝑓(𝑛) = 𝐴(𝑁)𝑓(𝑁) − ∫
𝑁

1
𝐴(𝑢)𝑓 ′(𝑢)𝑑𝑢.

Proof. Mathlib: sum_mul_eq_sub_sub_integral_mul

Lemma 418 (Sum identity). For 𝑠 ∈ ℂ, let 𝑓(𝑢) = 𝑢−𝑠 and 𝑎𝑛 = 1 for all 𝑛 𝑁 ∈ ℕ. Then
𝜁𝑁(𝑠) = ∑𝑁

𝑛=1 𝑎𝑛𝑓(𝑛).
Proof. Direct substution

Lemma 419 (Count sum). Let 𝑎𝑛 = 1. For 𝑢 ≥ 1, let 𝐴(𝑢) = ∑⌊𝑢⌋
𝑛=1 𝑎𝑛. Then 𝐴(𝑢) = ⌊𝑢⌋.

Proof. By definition, ∑⌊𝑢⌋
𝑛=1 1 = ⌊𝑢⌋.

Lemma 420 (Power deriv). Let 𝑓(𝑢) = 𝑢−𝑠. Then 𝑓 ′(𝑢) = −𝑠𝑢−𝑠−1.

Proof. Apply the power rule for differentiation. See Mathlib/Analysis/Calculus.

Lemma 421 (Apply Abel). For 𝑠 ∈ ℂ and integer 𝑁 ≥ 1,

𝜁𝑁(𝑠) = ⌊𝑁⌋𝑁−𝑠 − ∫
𝑁

1
⌊𝑢⌋(−𝑠𝑢−𝑠−1)𝑑𝑢.

Proof. Apply Lemma 417 with 𝑓(𝑢) = 𝑢−𝑠 and 𝑎𝑛 = 1. Use lemma 418, and 𝐴(𝑢) from Lemma
419, and 𝑓 ′(𝑢) from Lemma 420.

Lemma 422 (Floor int). For an integer 𝑁 ≥ 1, ⌊𝑁⌋ = 𝑁 .

Proof. By definition of the floor function.

Lemma 423 (First form). For 𝑠 ∈ ℂ and integer 𝑁 ≥ 1,

𝜁𝑁(𝑠) = 𝑁1−𝑠 + 𝑠 ∫
𝑁

1
⌊𝑢⌋𝑢−𝑠−1𝑑𝑢.

Proof. Apply Lemma 421 and Lemma 422.

Lemma 424 (Floor split). For any 𝑢 ∈ ℝ, ⌊𝑢⌋ = 𝑢 − {𝑢}, where {𝑢} is the fractional part of 𝑢.

Proof. By definition of the fractional part function.
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Lemma 425 (Integral split). For 𝑠 ∈ ℂ and integer 𝑁 ≥ 1,

∫
𝑁

1
⌊𝑢⌋𝑢−𝑠−1𝑑𝑢 = ∫

𝑁

1
𝑢−𝑠𝑑𝑢 − ∫

𝑁

1
{𝑢}𝑢−𝑠−1𝑑𝑢.

Proof. Apply Lemma 424 and linearity of the integral.

Lemma 426 (Second form). For 𝑠 ∈ ℂ and integer 𝑁 ≥ 1,

𝜁𝑁(𝑠) = 𝑁1−𝑠 + 𝑠 ∫
𝑁

1
𝑢−𝑠𝑑𝑢 − 𝑠 ∫

𝑁

1
{𝑢}𝑢−𝑠−1𝑑𝑢.

Proof. Apply Lemmas 423 and 425.

Lemma 427 (Main integral). For 𝑠 ∈ ℂ, 𝑠 ≠ 1, we have 𝑠 ∫𝑁
1 𝑢−𝑠𝑑𝑢 = 𝑠

1−𝑠 (𝑁1−𝑠 − 1).

Proof. The antiderivative of 𝑢−𝑠 is 𝑢1−𝑠
1−𝑠 . Evaluate at 𝑢 = 𝑁 and 𝑢 = 1.

Lemma 428 (Final form). For 𝑠 ∈ ℂ, 𝑠 ≠ 1 and integer 𝑁 ≥ 1,

𝜁𝑁(𝑠) = 𝑁1−𝑠

1 − 𝑠 + 1 + 1
𝑠 − 1 − 𝑠 ∫

𝑁

1
{𝑢}𝑢−𝑠−1𝑑𝑢.

Proof. Apply Lemmas 426 and 427 and combine terms: 𝑁1−𝑠 + 𝑠
1−𝑠 𝑁1−𝑠 = 𝑁1−𝑠(1 + 𝑠

1−𝑠 ) =
𝑁1−𝑠( 1−𝑠+𝑠

1−𝑠 ) = 𝑁1−𝑠
1−𝑠 . The term − 𝑠

1−𝑠 is 𝑠
𝑠−1 = 1 + 1

𝑠−1 .

Lemma 429 (Limit term). If ℜ(𝑠) > 1, then lim𝑁→∞ 𝑁1−𝑠 = 0.

Proof. |𝑁1−𝑠| = 𝑁1−ℜ(𝑠). Since 1 − ℜ(𝑠) < 0, this limit tends to 0.

Lemma 430 (Frac bound). For any 𝑢 ∈ ℝ, 0 ≤ {𝑢} < 1, and thus |{𝑢}| ≤ 1.

Proof. By definition of the fractional part.

Lemma 431 (Term bound). For 𝑢 ≥ 1 and 𝑠 ∈ ℂ, |{𝑢}𝑢−𝑠−1| ≤ 𝑢−ℜ(𝑠)−1.

Proof. Apply Lemma 430. We have |{𝑢}𝑢−𝑠−1| = |{𝑢}||𝑢−𝑠−1| ≤ 1 ⋅ 𝑢−ℜ(𝑠)−1.

Lemma 432 (Eps bound). Let 𝜀 > 0 and 𝑢 ≥ 1. If ℜ(𝑠) ≥ 𝜀 then |{𝑢}𝑢−𝑠−1| ≤ 𝑢−1−𝜀.

Proof. Apply Lemma 431 and that 𝑥 ↦ 𝑢−1−𝑥 is monotonic.

Lemma 433 (Triangle int). For 𝑧1, 𝑧2 ∈ ℂ, |𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|. For an integral, | ∫ 𝑔(𝑢)𝑑𝑢| ≤
∫ |𝑔(𝑢)|𝑑𝑢.

Proof. Standard results from complex analysis.

Lemma 434 (Integral conv). Let 𝜀 > 0 If ℜ(𝑠) ≥ 𝜀, the integral ∫∞
1 {𝑢}𝑢−𝑠−1𝑑𝑢 converges

uniformly.

Proof. By Lemmas 433 and 432, we calculate

∣ ∫
∞

1
{𝑢}𝑢−𝑠−1𝑑𝑢∣ ≤ ∫

∞

1
|{𝑢}𝑢−𝑠−1| ≤ ∫

∞

1
𝑢−1−𝜀𝑑𝑢 = 1

𝜀 .

Thus the integral converges.
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Lemma 435 (Zeta formula). For ℜ(𝑠) > 1,

𝜁(𝑠) = 1 + 1
𝑠 − 1 − 𝑠 ∫

∞

1
{𝑢}𝑢−𝑠−1𝑑𝑢.

Proof. Take the limit 𝑁 → ∞ in Lemma 428. Apply Lemmas 415, 429, and 434.

Lemma 436 (Analytic off). Let 𝑆 = {𝑠 ∈ ℂ ∶ 𝑠 ≠ 1}. Then 𝜁(𝑠) is analyticOnNhd 𝑆.

Proof. Apply theorem 464

Lemma 437 (S open). Let 𝑆 = {𝑠 ∈ ℂ ∶ 𝑠 ≠ 1}. Then 𝑆 is open.

Proof. 𝑆 is the complement of the singleton {1}, which is open.

Lemma 438 (T open). Let 𝑆 = {𝑠 ∈ ℂ ∶ 𝑠 ≠ 1} and 𝑇 = {𝑠 ∈ 𝑆 ∶ ℜ(𝑠) > 1/10}. Then 𝑇 is
open.

Proof. 𝑇 is the intersection of the open set 𝑆 with the open half-plane {𝑠 ∶ ℜ(𝑠) > 1/10}.

Lemma 439 (T connected). Let 𝑆 = {𝑠 ∈ ℂ ∶ 𝑠 ≠ 1} and 𝑇 = {𝑠 ∈ 𝑆 ∶ ℜ(𝑠) > 1/10}. Then 𝑇
is preconnected.

Proof. The set 𝑇 can be shown to be path-connected, which implies preconnected.

Lemma 440 (Integral analytic). If the integral of an analytic function 𝑓 ∶ ℂ → ℂ converges
uniformly for all 𝑠 such that ℜ(𝑠) ≥ 1

10 , then the integral is analytic (as a function of s).

Proof.

Lemma 441 (Analytic ext). Let 𝑆 = {𝑠 ∈ ℂ ∶ 𝑠 ≠ 1} and 𝑇 = {𝑠 ∈ 𝑆 ∶ ℜ(𝑠) > 1/10}. The
function 𝐹(𝑧) = 𝑧

𝑧−1 − 𝑧 ∫∞
1 {𝑢}𝑢−𝑧−1𝑑𝑢 is analyticOnNhd 𝑇 .

Proof. Take 𝑠 ∈ 𝑇 . The function 𝑧
𝑧−1 is analyticAt 𝑧 = 𝑠, since 𝑠 ≠ 1. The integral converges

uniformly by theorem 434, so 𝐹(𝑧) is analyticAt 𝑧 = 𝑠.

Lemma 442 (Divide split). For any complex number 𝑧 ≠ 1, we have 𝑧
𝑧−1 = 1 + 1

𝑧−1 .

Proof. Direct algebraic manipulation: 𝑧
𝑧−1 = (𝑧−1)+1

𝑧−1 = 𝑧−1
𝑧−1 + 1

𝑧−1 = 1 + 1
𝑧−1 .

Lemma 443 (Zeta extend). Let 𝑆 = {𝑠 ∈ ℂ ∶ 𝑠 ≠ 1} and 𝑇 = {𝑠 ∈ 𝑆 ∶ ℜ(𝑠) > 1/10}. We have
𝜁(𝑠) = 1 + 1

𝑠−1 − 𝑠 ∫∞
1 {𝑢}𝑢−𝑠−1𝑑𝑢 on 𝑇 .

Proof. By Lemma 435, the equality 𝜁(𝑠) = 𝐹(𝑠) holds for ℜ(𝑠) > 1. By Lemma 441, 𝐹(𝑠)
is analyticOnNhd 𝑇 . By Lemma 436 𝜁(𝑠) is analyticOnNhd 𝑆 ⊃ 𝑇 . Hence by the identity
principle, (Mathlib try AnalyticOnNhd.eqOn_of_preconnected_of_eventuallyEq) the equality
𝜁(𝑠) = 𝐹(𝑠) holds in 𝑇 .

Lemma 444 (First bound). For ℜ(𝑠) > 0, 𝑠 ≠ 1,

|𝜁(𝑠)| ≤ 1 + ∣ 1
𝑠 − 1∣ + |𝑠| ∫

∞

1
|{𝑢}𝑢−𝑠−1|𝑑𝑢.

Proof. Apply Lemma 433 to the formula in Lemma 443.

Lemma 445 (Integral value). For ℜ(𝑠) > 0, ∫∞
1 𝑢−ℜ(𝑠)−1𝑑𝑢 = 1

ℜ(𝑠) .
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Proof. The antiderivative is 𝑢−ℜ(𝑠)
−ℜ(𝑠) . Evaluating from 1 to ∞ gives 0 − 1

−ℜ(𝑠) = 1
ℜ(𝑠) .

Lemma 446 (Second bound). For ℜ(𝑠) > 0, 𝑠 ≠ 1,

|𝜁(𝑠)| ≤ 1 + ∣ 1
𝑠 − 1∣ + |𝑠|

ℜ(𝑠) .

Proof. Apply Lemmas 444, 431, and 445.

Lemma 447 (Inverse mod). For 𝑠 ∈ ℂ, 𝑠 ≠ 1, we have ∣ 1
𝑠−1 ∣ = 1

|𝑠−1| .

Proof. Algebraic identity and Lemma 433.

Lemma 448 (Third bound). For ℜ(𝑠) > 0, 𝑠 ≠ 1,

|𝜁(𝑠)| ≤ 1 + 1
|𝑠 − 1| + |𝑠|

ℜ(𝑠) .

Proof. Apply Lemmas 446 and 447.

Lemma 449 (s bound). Let 𝑠 = 𝜎 + 𝑖𝑡. If 1
2 ≤ 𝜎 < 3, then |𝑠| < 3 + |𝑡|.

Proof. |𝑠|2 = 𝜎2+𝑡2 ≤ 32+𝑡2 = 9+|𝑡|2. Since 0 ≤ 6|𝑡|, we have 9+|𝑡|2 ≤ 9+6|𝑡|+|𝑡|2 = (3+|𝑡|)2.
Taking the square root gives |𝑠| ≤ 3 + |𝑡|.

Lemma 450 (Real inv). If 1
2 ≤ ℜ(𝑠) < 3, then 1

ℜ(𝑠) ≤ 2.

Proof. From 1/2 ≤ ℜ(𝑠), taking reciprocals reverses the inequality.

Lemma 451 (Shift bound). Let 𝑠 = 𝜎 + 𝑖𝑡. If 1
2 ≤ 𝜎 < 3 and |𝑡| ≥ 1, then |𝑠 − 1| ≥ 1.

Proof. |𝑠 − 1|2 = (𝜎 − 1)2 + 𝑡2. Since |𝑡| ≥ 1, 𝑡2 ≥ 1. Since (𝜎 − 1)2 ≥ 0, we have |𝑠 − 1|2 ≥ 1.

Lemma 452 (Combine bounds). If 𝑠 = 𝜎 + 𝑖𝑡 with 1
2 ≤ 𝜎 < 3 and |𝑡| ≥ 1, then

|𝜁(𝑠)| < 1 + 1 + (3 + |𝑡|) ⋅ 2.

Proof. In Lemma 448, apply Lemma 451 to bound 1
|𝑠−1| ≤ 1. Apply Lemma 449 to bound |𝑠|

and Lemma 450 to bound 1
ℜ(𝑠) .

Lemma 453 (Algebra step). For |𝑡| ≥ 1, we have 1 + 1 + (3 + |𝑡|) ⋅ 2 = 8 + 2|𝑡|.
Proof. By arithmetic. 2 + 6 + 2|𝑡| = 8 + 2|𝑡|.
Lemma 454 (Upper bound). For all 𝑧 ∈ ℂ with 1

2 ≤ ℜ(𝑧) < 3 and |ℑ(𝑧)| ≥ 1, we have
|𝜁(𝑧)| < 8 + 2|ℑ(𝑧)|.
Proof. Apply Lemmas 452 and 453.

Lemma 455 (Shift calc). For 𝑠 ∈ ℂ, 𝑡 ∈ ℝ let 𝑧 = 𝑠 + 3/2 + 𝑖𝑡. Then ℜ(𝑧) = ℜ(𝑠) + 3/2 and
ℑ(𝑧) = ℑ(𝑠) + 𝑡.
Proof. Direct calculation

Lemma 456 (Shift cond). For 𝑠 ∈ ℂ, 𝑡 ∈ ℝ let 𝑧 = 𝑠 + 3/2 + 𝑖𝑡. If |𝑠| ≤ 1 and |𝑡| ≥ 3, then
ℜ(𝑧) ∈ [1/2, 3] and |ℑ(𝑧)| ≥ 1
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Proof. Apply theorem 455, and use arithmetic. Here ℑ(𝑠)2 +ℜ(𝑠)2 = |𝑠|2 ∈ [0, 1] by assumption.

Lemma 457 (Global bound). There exists 𝑏 > 1 such that for all 𝑡 ∈ ℝ we have |𝜁(𝑠+3/2+𝑖𝑡)| ≤
8 + 2|𝑡| for all |𝑠| ≤ 1 and |𝑡| ≥ 3.

Proof. Apply theorems 454 and 456.

3.3 Zeta derivatives
Lemma 458 (Diff off pole). Let 𝑆 = {𝑠 ∈ ℂ ∶ 𝑠 ≠ 1}. For all 𝑠 ∈ 𝑆 we have 𝜁(𝑠) DifferentiableAt
𝑠.

Proof.

Lemma 459 (At to within). Let 𝑇 ⊂ ℂ. For 𝑔 ∶ 𝑇 → ℂ and 𝑠 ∈ 𝑇 , if 𝑔 DifferentiableAt 𝑠 then
𝑔 DifferentiableWithinAt 𝑠
Proof. Mathlib: DifferentiableAt.differentiableWithinAt

Lemma 460 (Within to on). Let 𝑇 ⊂ ℂ. For 𝑔 ∶ 𝑇 → ℂ, if 𝑔 DifferentiableWithinAt 𝑠 for all
𝑠 ∈ 𝑇 , then 𝑔 DifferentiableOn 𝑇
Proof. Unfold definition of DifferentiableOn 𝑇 in terms of differentiableWithinAt 𝑠 for all 𝑠 ∈
𝑇 .

Lemma 461 (At to on). Let 𝑇 ⊂ ℂ. For 𝑔 ∶ 𝑇 → ℂ, if 𝑔 DifferentiableAt 𝑠 for all 𝑠 ∈ 𝑇 , then
𝑔 DifferentiableOn 𝑇
Proof. By theorems 459 and 460

Lemma 462 (Diff to anal). Let open 𝑇 ⊂ ℂ. For 𝑔 ∶ 𝑇 → ℂ, if 𝑔 DifferentiableOn 𝑇 , then 𝑔
analyticOnNhd 𝑇
Proof. Mathlib: Complex.analyticOnNhd_iff_differentiableOn

Lemma 463 (At gives anal). Let open 𝑇 ⊂ ℂ. For 𝑔 ∶ 𝑇 → ℂ, if 𝑔 DifferentiableAt 𝑠 for all
𝑠 ∈ 𝑇 , then 𝑔 analyticOnNhd 𝑇 .

Proof. By theorems 461 and 462

Lemma 464 (Analytic off). Let 𝑆 = {𝑠 ∈ ℂ ∶ 𝑠 ≠ 1}. Then 𝜁(𝑠) is analyticOnNhd 𝑆.

Proof. Apply theorems 458 and 463 with 𝑇 = 𝑆 and 𝑔(𝑠) = 𝜁(𝑠).
Lemma 465 (Disk avoid). Let 𝑡 ∈ ℝ with |𝑡| > 1. Let 𝑐 = 3/2 + 𝑖𝑡 and 𝑆𝑡 = {𝑠 ∈ ℂ ∶ 𝑠 + 𝑐 ≠ 1}.
Then 𝑠 ≠ 1 for all 𝑠 ∈ ℂ with |𝑠 − 𝑐| ≤ 1.

Proof. For sake of contradiction, suppose 𝑠 = 1. Then we calculate

|𝑠 − 𝑐| = |1 − 𝑐| = |1 − 3/2 − 𝑖𝑡| = |1/2 − 𝑖𝑡| ≥ |ℑ(𝑖𝑡)| = |𝑡|.

Thus |𝑠 − 𝑐| ≥ |𝑡| > 1, but this contradicts |𝑠 − 𝑐| ≤ 1. Hence the proof is complete.

Lemma 466 (Disk subset). Let 𝑡 ∈ ℝ with |𝑡| > 1. Let 𝑐 = 3/2 + 𝑖𝑡. Then 𝔻1(𝑐) ⊂ 𝑆
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Proof. By theorem 465, and unfolding the definitions of 𝑐, 𝔻1(𝑐), and 𝑆.

Lemma 467 (Disk analytic). Let 𝑡 ∈ ℝ with |𝑡| > 1, 𝑥 ∈ ℝ, and let 𝑐 = 𝑥 + 𝑖𝑡. Then 𝜁(𝑠) is
analyticOnNhd 𝔻1(𝑐).
Proof. Apply theorems 464 and 466, and then Mathlib: AnalyticOnNhd.mono

Lemma 468 (Zero free). Let 𝑠 ∈ ℂ. If ℜ(𝑠) > 1 then 𝜁(𝑠) ≠ 0.

Proof.

Lemma 469 (Point nonzero). For all 𝑡 ∈ ℝ we have 𝜁(3/2 + 𝑖𝑡) ≠ 0
Proof. By theorem 468

Lemma 470 (Normalize analytic). Let 𝑐 ∈ ℂ and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1(𝑐) with 𝑓(𝑐) ≠ 0.
Then the function 𝑓𝑐(𝑧) = 𝑓(𝑧 + 𝑐)/𝑓(𝑐) is AnalyticOnNhd 𝔻1 and satisfies 𝑓𝑐(0) = 1.

Proof. Since 𝑓 is AnalyticOnNhd 𝔻1(𝑐), and 𝔻1(𝑐) = {𝑧 +𝑐 ∶ 𝑧 ∈ 𝔻1}, then 𝑓𝑐 is AnalyticOnNhd
𝔻1.

Next we calculate 𝑓𝑐(0) = 𝑓(0+𝑐)
𝑓(𝑐) = 𝑓(𝑐)

𝑓(𝑐) = 1.

Lemma 471 (Log derivative). Let 𝑐 ∈ ℂ and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1(𝑐) with 𝑓(𝑐) ≠ 0.
Let 𝑓𝑐(𝑧) = 𝑓(𝑧 + 𝑐)/𝑓(𝑐). Then for any 𝑧 where 𝑓(𝑧 + 𝑐) ≠ 0, we have logDeriv(𝑓𝑐)(𝑧) =
logDeriv(𝑓)(𝑧 + 𝑐).
Proof. By the chain rule, we calculate 𝑓 ′

𝑐(𝑧) = 𝑓 ′(𝑧 + 𝑐). Thus since 𝑓(𝑐), 𝑓(𝑧 + 𝑐) ≠ 0, we
calculate

logDeriv(𝑓𝑐)(𝑧) = 𝑓 ′
𝑐(𝑧)

𝑓𝑐(𝑧) = 𝑓 ′(𝑧 + 𝑐)/𝑓(𝑐)
𝑓(𝑧 + 𝑐)/𝑓(𝑐) = 𝑓 ′(𝑧 + 𝑐)

𝑓(𝑧 + 𝑐) = logDeriv(𝑓)(𝑧 + 𝑐)

Lemma 472 (Shift bound). Let 𝐵 > 1, 0 < 𝑅 < 1, 𝑐 ∈ ℂ, and 𝑓 ∶ ℂ → ℂ with 𝑓(𝑐) ≠ 0. If
|𝑓(𝑧)| ≤ 𝐵 for all 𝑧 ∈ 𝔻𝑅(𝑐), then the function 𝑓𝑐(𝑧) = 𝑓(𝑧 + 𝑐)/𝑓(𝑐) satisfies |𝑓𝑐(𝑧)| ≤ 𝐵/|𝑓(𝑐)|
for all 𝑧𝔻𝑅.

Proof. If 𝑧𝔻𝑅 then 𝑧 + 𝑐 ∈ 𝔻𝑅, so |𝑓(𝑧 + 𝑐)| ≤ 𝐵 by assumption. Thus we calculate |𝑓𝑐(𝑧)| =
|𝑓(𝑧 + 𝑐)|/𝑓(𝑐) ≤ 𝐵/|𝑓(𝑐)|.
Lemma 473 (Zero shift). Let 𝑟 > 0, 𝑐 ∈ ℂ, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1(𝑐) with 𝑓(𝑐) ≠ 0.
Let 𝑓𝑐(𝑧) = 𝑓(𝑧 + 𝑐)/𝑓(𝑐). We have 𝜌′ ∈ 𝒦𝑓𝑐

(𝑟) if and only if 𝜌′ = 𝜌 − 𝑐 where 𝜌 ∈ 𝒦𝑓(𝑟; 𝑐). In
particular 𝒦𝑓𝑐

(𝑟) = {𝜌 − 𝑐 ∶ 𝜌 ∈ 𝒦𝑓(𝑟)}.

Proof. By definition, 𝜌′ ∈ 𝒦𝑓𝑐
(𝑟) means 𝑓𝑐(𝜌′) = 0 and |𝜌′| ≤ 𝑟. By definition of 𝑓𝑐 we have

𝑓𝑐(𝜌′) = 𝑓(𝜌′ + 𝑐)/𝑓(𝑐). Since 𝑓(𝑐) ≠ 0 we conclude 𝑓(𝜌′ + 𝑐) = 0. Also |(𝜌′ + 𝑐) − 𝑐| = |𝜌′| ≤ 𝑟,
and hence 𝜌′ + 𝑐 ∈ 𝒦𝑓(𝑟; 𝑐). Therefore 𝜌′ ∈ 𝒦𝑓𝑐

(𝑟) implies 𝜌′ + 𝑐 ∈ 𝒦𝑓(𝑟; 𝑐)
The proof that 𝜌 ∈ 𝒦𝑓(𝑟; 𝑐) implies 𝜌 − 𝑐 ∈ 𝒦𝑓𝑐

(𝑟) is similar.

Lemma 474 (Order shift). Let 𝑟 > 0, 𝑐 ∈ ℂ, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1(𝑐) with 𝑓(𝑐) ≠ 0.
Let 𝑓𝑐(𝑧) = 𝑓(𝑧 + 𝑐)/𝑓(𝑐). For 𝜌 ∈ 𝒦𝑓𝑐

(𝑟), the analyticOrderAt satisfies 𝑚𝜌,𝑓𝑐
= 𝑚𝜌+𝑐,𝑓 .
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Proof. By definition of analyticOrderAt, we have 𝑓𝑐(𝑧) = (𝑧 − 𝜌)𝑚𝜌,𝑓𝑐 ℎ(𝑧) for some ℎ Ana-
lyticAt 𝜌 with ℎ(𝜌) ≠ 0. As 𝑓𝑐(𝑧) = 𝑓(𝑧 + 𝑐)/𝑓(𝑐) and 𝑓(𝑐) ≠ 0, this implies 𝑓(𝑧 + 𝑐) =
(𝑧 − 𝜌′)𝑚𝜌′,𝑓𝑐 ℎ(𝑧)𝑓(𝑐). Thus letting 𝑤 = 𝑧 + 𝑐 and 𝑔(𝑤) = ℎ(𝑤 − 𝑐)𝑓(𝑐), we have 𝑓(𝑤) =
(𝑤 − 𝑐 − 𝜌)𝑚𝜌,𝑓𝑐 𝑔(𝑤). Observe ℎ AnalyticAt 𝜌′ implies that 𝑔 is AnalyticAt 𝜌′ + 𝑐. And
ℎ(𝜌′), 𝑓(𝑐) ≠ 0 imply 𝑔(𝜌 + 𝑐) ≠ 0. Hence by definition we conclude AnalyticAt of 𝑓 at 𝜌 + 𝑐
equals 𝑚𝜌′,𝑓𝑐

.

Lemma 475 (Disk minus K). Let 𝑟1 > 0, 𝑐 ∈ ℂ, and 𝑓 ∶ ℂ → ℂ AnalyticOnNhd 𝔻1(𝑐) with
𝑓(𝑐) ≠ 0. Let 𝑓𝑐(𝑧) = 𝑓(𝑧 + 𝑐)/𝑓(𝑐). We have 𝑧 ∈ 𝔻𝑟1

∖ 𝒦𝑓𝑐
(𝑅1) if and only if 𝑧 + 𝑐 ∈

𝔻𝑟1
(𝑐) ∖ 𝒦𝑓(𝑅1; 𝑐)

Proof. First 𝑧 ∈ 𝔻𝑟1
if and only if |𝑧| ≤ 𝑟1 if and only if |(𝑧 + 𝑐) − 𝑐| ≤ 𝑟1 iff 𝑧 + 𝑐 ∈ 𝔻𝑟1

(𝑐).
Second, since 𝑓(𝑐) ≠ 0 we have 𝑧 ∈ 𝒦𝑓𝑐

(𝑅1) if and only if 𝑓𝑐(𝑧) = 0 if and only if 𝑓(𝑧 + 𝑐) = 0 if
and only if 𝑧 + 𝑐 ∈ 𝒦𝑓(𝑅1; 𝑐). Combining these two equivalences, 𝑧 ∈ 𝔻𝑟1

∖ 𝒦𝑓𝑐
(𝑅1) if and only

if 𝑧 + 𝑐 ∈ 𝔻𝑟1
(𝑐) ∖ 𝒦𝑓(𝑅1; 𝑐).

Lemma 476 (Final bound). Let 𝐵 > 1, 0 < 𝑟1 < 𝑟 < 𝑅1 < 𝑅 < 1. Let 𝑐 ∈ ℂ and 𝑓 ∶ ℂ → ℂ
AnalyticOnNhd 𝔻1(𝑐) with 𝑓(𝑐) ≠ 0. Let 𝑓𝑐(𝑧) = 𝑓(𝑧 + 𝑐)/𝑓(𝑐). If |𝑓(𝑧)| < 𝐵 for all 𝑧 ∈ 𝔻𝑅(𝑐),
then for all 𝑧 ∈ 𝔻𝑟1

∖ 𝒦𝑓𝑐
(𝑅1) we have

∣ 𝑓
′
𝑐

𝑓𝑐
(𝑧) − ∑

𝜌′∈𝒦𝑓𝑐 (𝑅1)

𝑚𝜌′,𝑓𝑐

𝑧 − 𝜌′ ∣ ≤ ( 16𝑟2

(𝑟 − 𝑟1)3 + 1
(𝑅2/𝑅1 − 𝑅1) log(𝑅/𝑅1)) log(𝐵/|𝑓(𝑐)|).

Proof. Apply theorem 383 with the function 𝑓𝑐, using the conditions theorems 470 to 472.

Lemma 477 (Log expansion). Let 𝑡 ∈ ℝ with |𝑡| > 3. Let 𝑐 = 3/2 + 𝑖𝑡, 𝐵 > 1, 0 < 𝑟1 < 𝑟 <
𝑅1 < 𝑅 < 1. If |𝜁(𝑧)| < 𝐵 for all 𝑧 ∈ 𝔻𝑅(𝑐), then for all 𝑧 ∈ 𝔻𝑟1

(𝑐) ∖ 𝒦𝜁(𝑅1; 𝑐) we have

∣ 𝜁
′(𝑧)

𝜁(𝑧) − ∑
𝜌∈𝒦𝜁(𝑅1;𝑐)

𝑚𝜌,𝜁
𝑧 − 𝜌 ∣ ≤ ( 16𝑟2

(𝑟 − 𝑟1)3 + 1
(𝑅2/𝑅1 − 𝑅1) log(𝑅/𝑅1)) log(𝐵/|𝜁(𝑐)|)

Proof. We apply theorem 476 using 𝑓(𝑧) = 𝜁(𝑧). The conditions 𝜁 AnalyticOnNhd 𝔻1(𝑐) with
𝜁(𝑐) ≠ 0 hold by theorems 467 and 469.

Lemma 478 (Lower shift). There exists 𝑎 > 0 such that for all 𝑡 ∈ ℝ we have |𝜁(3/2 + 𝑖𝑡)| ≥ 𝑎
Proof. Euler product for zeta, triangle inequality, properties of 𝜁(𝜎) for 𝜎 > 1 Let 𝑠 = 𝜎 + 𝑖𝑡.
We are interested in the case where 𝜎 = 3/2.

Step 1: Use the Euler Product Formula
For any complex number 𝑠 with ℜ(𝑠) = 𝜎 > 1, the Riemann zeta function can be represented

by the absolutely convergent Euler product over all prime numbers 𝑝:

𝜁(𝑠) = ∏
𝑝

1
1 − 𝑝−𝑠

This implies that its reciprocal is
1

𝜁(𝑠) = ∏
𝑝

(1 − 𝑝−𝑠)
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We take the modulus of both sides:

∣ 1
𝜁(𝑠) ∣ = ∣∏

𝑝
(1 − 𝑝−𝑠)∣ = ∏

𝑝
|1 − 𝑝−𝑠|

Step 2: Bound the term |1 − 𝑝−𝑠|
Using the triangle inequality (|𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|), we can bound each term in the product:

|1 − 𝑝−𝑠| ≤ |1| + | − 𝑝−𝑠| = 1 + |𝑝−𝑠|

The modulus of 𝑝−𝑠 is:

|𝑝−𝑠| = |𝑝−(𝜎+𝑖𝑡)| = |𝑝−𝜎𝑝−𝑖𝑡| = |𝑝−𝜎||𝑒−𝑖𝑡 log 𝑝| = 𝑝−𝜎 ⋅ 1 = 𝑝−𝜎

So, we have |1 − 𝑝−𝑠| ≤ 1 + 𝑝−𝜎.
Step 3: Bound the entire product
Substituting this back into the product for the reciprocal’s modulus:

∣ 1
𝜁(𝑠) ∣ ≤ ∏

𝑝
(1 + 𝑝−𝜎)

The product ∏𝑝(1 + 𝑝−𝜎) can be expanded:

(1 + 2−𝜎)(1 + 3−𝜎)(1 + 5−𝜎) ⋯ = 1 + 2−𝜎 + 3−𝜎 + 5−𝜎 + 6−𝜎 + …

This expanded sum contains terms 𝑛−𝜎 for all square-free integers 𝑛. This sum is strictly less
than the sum over all integers 𝑛 ≥ 1:

∏
𝑝

(1 + 𝑝−𝜎) <
∞

∑
𝑛=1

1
𝑛𝜎

The sum on the right is, by definition, the Riemann zeta function evaluated at the real number
𝜎, i.e., 𝜁(𝜎). Thus, we have established that for 𝜎 > 1:

∣ 1
𝜁(𝜎 + 𝑖𝑡) ∣ < 𝜁(𝜎)

Step 4: Conclude the proof
Taking the reciprocal of the inequality (and flipping the inequality sign) gives:

|𝜁(𝜎 + 𝑖𝑡)| > 1
𝜁(𝜎)

We are interested in the specific case 𝜎 = 3/2. For this value, we have:

|𝜁(3/2 + 𝑖𝑡)| > 1
𝜁(3/2)

The value 𝜁(3/2) = ∑∞
𝑛=1 𝑛−3/2 is a convergent sum of positive terms, so it is a finite positive

constant (approximately 2.612). We can therefore define our constant 𝑎 to be 𝑎 = 1/𝜁(3/2).
Since 𝜁(3/2) > 0, we have 𝑎 > 0. The inequality |𝜁(3/2 + 𝑖𝑡)| ≥ 𝑎 holds for all 𝑡 ∈ ℝ.
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Lemma 479 (Log lower). There exists 𝐴 > 1 such that for all 𝑡 ∈ ℝ,

log ( 1
|𝜁(3/2 + 𝑖𝑡)|) ≤ 𝐴

Proof. Let 𝑎 > 0 be as in theorem 478, so |𝜁(3/2+𝑖𝑡)| ≥ 𝑎 for all 𝑡 ∈ ℝ. Set 𝐴 = max{2, log(1/𝑎)}.
Clearly 𝐴 > 1 since 𝑎 > 0 and log(1/𝑎) > 0. For any 𝑡 ∈ ℝ, set 𝑥 = |𝜁(3/2 + 𝑖𝑡)|. Then 𝑎 ≤ 𝑥, so
1/𝑥 ≤ 1/𝑎 and log(1/𝑥) ≤ log(1/𝑎) ≤ 𝐴. Also, log(1/𝑥) < 2 ≤ 𝐴 for 𝑥 > 1/2. Thus log(1/𝑥) ≤ 𝐴
for all 𝑡.
Lemma 480 (Upper pre). There exists 𝑏 > 1 such that for all 𝑡 ∈ ℝ we have |𝜁(𝑠+3/2+𝑖𝑡)| ≤ 𝑏|𝑡|
for all |𝑠| ≤ 1 and |𝑡| ≥ 3.

Proof. Apply theorem 457

Lemma 481 (Upper disk). There exists 𝑏 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| > 3, letting
𝑐 = 3/2 + 𝑖𝑡, we have |𝜁(𝑠)| ≤ 𝑏|𝑡| for all 𝑠 ∈ 𝔻1(𝑐).
Proof. The proof of this lemma is a direct application of theorem 480 by a change of variables.

Step 1: Recall the prerequisite lemma
Theorem 480 states that there exists a constant 𝑏 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| ≥ 3 and

for all complex numbers 𝑠𝑝𝑟𝑒 ∈ ℂ with |𝑠𝑝𝑟𝑒| ≤ 1, the following inequality holds:

|𝜁(𝑠𝑝𝑟𝑒 + 3/2 + 𝑖𝑡)| ≤ 𝑏|𝑡|

We will show that the conditions and conclusion of the current lemma perfectly align with this
statement.

Step 2: Unpack the conditions of the current lemma
We are given the following conditions:

1. A real number 𝑡 with |𝑡| > 3.

2. A complex number 𝑐 = 3/2 + 𝑖𝑡.
3. A complex number 𝑠 which belongs to the closed disk of radius 1 centered at 𝑐, denoted

𝔻1(𝑐).
The condition 𝑠 ∈ 𝔻1(𝑐) means, by definition, that the distance between 𝑠 and 𝑐 is at most 1:

|𝑠 − 𝑐| ≤ 1

Step 3: Define a new variable to match the prerequisite
Our goal is to bound |𝜁(𝑠)|. Let’s define a new variable, which we will call 𝑠𝑝𝑟𝑒, in a way

that relates our 𝑠 to the argument of the zeta function in theorem 480. Let’s set the argument
of 𝜁 in our lemma, which is 𝑠, equal to the argument of 𝜁 in the prerequisite lemma, which is
𝑠𝑝𝑟𝑒 + 3/2 + 𝑖𝑡:

𝑠 = 𝑠𝑝𝑟𝑒 + 3/2 + 𝑖𝑡
Now, let’s solve for 𝑠𝑝𝑟𝑒:

𝑠𝑝𝑟𝑒 = 𝑠 − (3/2 + 𝑖𝑡)
Recognizing the definition 𝑐 = 3/2 + 𝑖𝑡, this simplifies to:

𝑠𝑝𝑟𝑒 = 𝑠 − 𝑐
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Step 4: Verify the conditions on the new variable
Theorem 480 requires that the variable 𝑠𝑝𝑟𝑒 satisfies |𝑠𝑝𝑟𝑒| ≤ 1. Let’s check if our definition

of 𝑠𝑝𝑟𝑒 meets this condition. From Step 2, we know that for any 𝑠 ∈ 𝔻1(𝑐), we have |𝑠 − 𝑐| ≤ 1.
Substituting our definition from Step 3, this is exactly the condition:

|𝑠𝑝𝑟𝑒| ≤ 1

Therefore, for any 𝑠 that satisfies the conditions of our lemma, we can define 𝑠𝑝𝑟𝑒 = 𝑠 − 𝑐, and
this 𝑠𝑝𝑟𝑒 will satisfy the conditions of theorem 480.

Step 5: Apply the prerequisite lemma and conclude
We have established the following:

• We are given 𝑡 with |𝑡| > 3. This matches the condition on 𝑡 in theorem 480.

• For any 𝑠 ∈ 𝔻1(𝑐), we can write 𝑠 = 𝑠𝑝𝑟𝑒 + 𝑐 = 𝑠𝑝𝑟𝑒 + 3/2 + 𝑖𝑡, where 𝑠𝑝𝑟𝑒 = 𝑠 − 𝑐 satisfies
|𝑠𝑝𝑟𝑒| ≤ 1.

We can now apply the inequality from theorem 480 to the number 𝜁(𝑠𝑝𝑟𝑒 +3/2+𝑖𝑡). The lemma
guarantees the existence of a constant 𝑏 > 1 such that:

|𝜁(𝑠𝑝𝑟𝑒 + 3/2 + 𝑖𝑡)| ≤ 𝑏|𝑡|

Since 𝑠 = 𝑠𝑝𝑟𝑒 + 3/2 + 𝑖𝑡, this inequality is identical to:

|𝜁(𝑠)| ≤ 𝑏|𝑡|

This holds for any 𝑠 ∈ 𝔻1(𝑐) and any 𝑡 ∈ ℝ with |𝑡| > 3. This is precisely the statement we
needed to prove.

Lemma 482 (Expand bound). There exists a constant 𝐴 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| > 3,
𝑐 = 3/2 + 𝑖𝑡, 𝐵 > 1, 0 < 𝑟1 < 𝑟 < 𝑅1 < 𝑅 < 1, 𝑧 ∈ 𝔻𝑟1

(𝑐) ∖ 𝒦𝜁(𝑅1; 𝑐) we have

∣ 𝜁
′(𝑧)

𝜁(𝑧) − ∑
𝜌∈𝒦𝜁(𝑅1;𝑐)

𝑚𝜌,𝜁
𝑧 − 𝜌 ∣ ≤ ( 16𝑟2

(𝑟 − 𝑟1)3 + 1
(𝑅2/𝑅1 − 𝑅1) log(𝑅/𝑅1)) ( log |𝑡| + log(𝑏) + 𝐴)

Proof. We apply theorems 477, 479 and 481 with 𝐵 = 𝑏𝑡, and 𝐶1 = 𝐶/𝑅.

Lemma 483 (Final expansion). Let 0 < 𝑟1 < 𝑟 < 5/6. There exists constants 𝐶 > 1 such that
for all 𝑡 ∈ ℝ with |𝑡| > 3, 𝑐 = 3/2 + 𝑖𝑡, and 𝑧 ∈ 𝔻𝑟1

(𝑐) ∖ 𝒦𝜁(5/6; 𝑐) we have

∣ 𝜁
′(𝑧)

𝜁(𝑧) − ∑
𝜌∈𝒦𝜁(5/6;𝑐)

𝑚𝜌,𝜁
𝑧 − 𝜌 ∣ ≤ 𝐶 ( 1

(𝑟 − 𝑟1)3 + 1) log |𝑡|

Proof. We apply theorem 482 and choose 𝑅1 = 5/6, 𝑅 = 8/9. Set 𝐶 = (16 + 1
(𝑅2/𝑅1−𝑅1) log(𝑅/𝑅1) ) (1+

log(𝑏) + 𝐴).
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Chapter 4

Zero Free Region

Definition 484 (Log derivative). For 𝑠 ∈ ℂ define 𝑍(𝑠) = 𝜁′(𝑠)
𝜁(𝑠) .

Definition 485 (Zero set). Define the set 𝒵 = {𝜎 + 𝑖𝑡 ∈ ℂ ∶ 𝜎, 𝑡 ∈ ℝ and 𝜁(𝜎 + 𝑖𝑡) = 0}.

Definition 486 (Window zeros). For 𝑡 ∈ ℝ define the set

𝒵𝑡 = {𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ ℂ ∶ 𝜁(𝜌1) = 0 and |𝜌1 − (3/2 + 𝑖𝑡)| ≤ 5/6}

Lemma 487 (Finite set). For each 𝑡 ∈ ℝ the set 𝒵𝑡 is finite.

Proof.

Lemma 488 (Reciprocal real). Let 𝑧 ∈ ℂ. If ℜ(𝑧) > 0 then ℜ(1/𝑧) > 0.

Proof.

Lemma 489 (Zero free). Let 𝜎, 𝑡 ∈ ℝ. If 𝜎 > 1 then 𝜁(𝜎 + 𝑖𝑡) ≠ 0.

Proof. Use lemma _root_.riemannZeta_ne_zero_of_one_le_re
in Nonvanishing.lean in Mathlib / NumberTheory / LSeries .

Lemma 490 (Zero bound). Let 𝜎1, 𝑡1 ∈ ℝ. If 𝜁(𝜎1 + 𝑖𝑡1) = 0 then 𝜎1 ≤ 1.

Proof. Contrapositive of Lemma 489.

Lemma 491 (Zero bound). Let 𝑡 ∈ ℝ. If 𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ 𝒵𝑡 then 𝜎1 ≤ 1.

Proof. By definition 486 𝜌1 ∈ 𝒵𝑡 implies 𝜁(𝜌1) = 0. Now apply Lemma 490.

Lemma 492 (Outside zeros). For 𝛿 > 0 and 𝑡 ∈ ℝ, let 𝑠 = 1 + 𝛿 + 𝑖𝑡. Then 𝑠 ∉ 𝒵𝑡.

Proof. We have ℜ(𝑠) = 1 + 𝛿 > 1 since 𝛿 > 0. Thus 𝜁(𝑠) ≠ 0 by theorem 468, and so 𝑠 ∉ 𝒵𝑡.

Lemma 493 (Half disk). For 0 < 𝛿 < 1 and 𝑡 ∈ ℝ, let 𝑐 = 3/2 + 𝑖𝑡. Then 1 + 𝛿 + 𝑖𝑡 ∈ 𝔻1/2(𝑐).
Proof. We calculate 1+𝛿+𝑖𝑡−𝑐 = 1+𝛿−3/2 = 1/2−𝛿. Hence |(1+𝛿+𝑖𝑡)−𝑐| ≤ |1/2−𝛿| ≤ 1/2
so 1 + 𝛿 + 𝑖𝑡 ∈ 𝔻1/2(𝑐).
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Lemma 494 (Sum bound). There exists a constant 𝐶 > 0 such that for all 0 < 𝛿 < 1 and 𝑡 ∈ ℝ,
we have

∣ ∑
𝜌1∈𝒵𝑡

𝑚𝜌1,𝜁
1 + 𝛿 + 𝑖𝑡 − 𝜌1

− 𝑍(1 + 𝛿 + 𝑖𝑡)∣ ≤ 𝐶 log(|𝑡| + 2).

Proof. Apply Lemma 483 with 𝑧 = 1 + 𝛿 + 𝑖𝑡 and 𝑟1 = 1/2 and 𝑟 = 2/3. For 𝑐 = 3/2 + 𝑖𝑡, note
𝑧 ∈ 𝔻𝑟1

(𝑐) by theorem 493. Further 𝒵𝑡 = 𝒦𝜁(5/6; 𝑐) and 𝑧 ∉ 𝒦𝜁(5/6; 𝑐) by theorem 492. We
choose 𝐶1 = 𝐶( 1

(𝑟−𝑟1)3 + 1).

Lemma 495 (Real bound). There exists a constant 𝐶 > 0 such that for all 0 < 𝛿 < 1 and 𝑡 ∈ ℝ,
we have

ℜ ( ∑
𝜌1∈𝒵𝑡

𝑚𝜌1,𝜁
1 + 𝛿 + 𝑖𝑡 − 𝜌1

− 𝑍(1 + 𝛿 + 𝑖𝑡)) ≤ 𝐶 log(|𝑡| + 2).

Proof. Apply Lemma 494 and use Mathlib: Complex.re_le_abs ℜ(𝑤) ≤ |𝑤| for 𝑤 = ∑𝜌1∈𝒵𝑡

𝑚𝜌1,𝜁
1+𝛿+𝑖𝑡−𝜌1

−
𝑍(1 + 𝛿 + 𝑖𝑡).
Lemma 496 (Split real). There exists a constant 𝐶 > 0 such that for all 0 < 𝛿 < 1 and 𝑡 ∈ ℝ,
we have

ℜ ( ∑
𝜌1∈𝒵𝑡

𝑚𝜌1,𝜁
1 + 𝛿 + 𝑖𝑡 − 𝜌1

) + ℜ (−𝑍(1 + 𝛿 + 𝑖𝑡)) ≤ 𝐶 log(|𝑡| + 2).

Proof.

Lemma 497 (Double real). There exists a constant 𝐶 > 0 such that for all 0 < 𝛿 < 1 and 𝑡 ∈ ℝ,
we have

ℜ ( ∑
𝜌1∈𝒵2𝑡

𝑚𝜌1,𝜁
1 + 𝛿 + 2𝑖𝑡 − 𝜌1

) + ℜ (−𝑍(1 + 𝛿 + 2𝑖𝑡)) ≤ 𝐶 log(|2𝑡| + 2).

Proof. Apply Lemma 495 with 2𝑡.
Lemma 498 (Real sum). If 𝒵 is a finite set and 𝑐𝑧 ∈ ℂ for 𝑧 ∈ 𝒵, then ℜ(∑𝑧∈𝒵 𝑐𝑧) =
∑𝑧∈𝒵 ℜ(𝑐𝑧).
Proof.

Lemma 499 (Sum split). For 𝑡 ∈ ℝ and 0 < 𝛿 < 1, we have

ℜ( ∑
𝜌1∈𝒵𝑡

𝑚𝜌1,𝜁
1 + 𝛿 + 𝑖𝑡 − 𝜌1

) = ∑
𝜌1∈𝒵𝑡

ℜ(
𝑚𝜌1,𝜁

1 + 𝛿 + 𝑖𝑡 − 𝜌1
)

Proof. Apply Lemmas 487 and 498 with 𝒵 = 𝒵𝑡, 𝑧 = 𝜌1, and 𝑐𝑧 = 𝑚𝜌1,𝜁
1+𝛿+𝑖𝑡−𝑧 .

Lemma 500 (Sum split). For 𝑡 ∈ ℝ and 0 < 𝛿 < 1, we have

ℜ( ∑
𝜌1∈𝒵2𝑡

𝑚𝜌1,𝜁
1 + 𝛿 + 2𝑖𝑡 − 𝜌1

) = ∑
𝜌1∈𝒵2𝑡

ℜ(
𝑚𝜌1,𝜁

1 + 𝛿 + 2𝑖𝑡 − 𝜌1
)

Proof. Apply Lemma 499 with 2𝑡.
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Lemma 501 (Difference form). For 𝛿 > 0, 𝑡 ∈ ℝ, and 𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ 𝒵𝑡 we have

1 + 𝛿 + 𝑖𝑡 − 𝜌1 = (1 + 𝛿 − 𝜎1) + 𝑖(𝑡 − 𝑡1).

Proof. We calculate 1 + 𝛿 + 𝑖𝑡 − 𝜌1 = 1 + 𝛿 + 𝑖𝑡 − (𝜎1 + 𝑖𝑡1) = (1 + 𝛿 − 𝜎1) + 𝑖(𝑡 − 𝑡1).
Lemma 502 (Real part). For 𝛿 > 0, 𝑡 ∈ ℝ, and 𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ 𝒵𝑡 we have

ℜ(1 + 𝛿 + 𝑖𝑡 − 𝜌1) = 1 + 𝛿 − 𝜎1.

Proof. Apply Lemma 501, then take the real part.

Lemma 503 (Delta bound). For 𝛿 > 0, 𝑡 ∈ ℝ, and 𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ 𝒵𝑡 we have

1 + 𝛿 − 𝜎1 ≥ 𝛿.

Proof. Apply Lemma 491.

Lemma 504 (Real delta). For 𝛿 > 0, 𝑡 ∈ ℝ, and 𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ 𝒵𝑡 we have

ℜ(1 + 𝛿 + 𝑖𝑡 − 𝜌1) ≥ 𝛿.

Proof. Apply Lemmas 502 and 503.

Lemma 505 (Positive real). For 𝛿 > 0, 𝑡 ∈ ℝ, and 𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ 𝒵𝑡 we have

ℜ(1 + 𝛿 + 𝑖𝑡 − 𝜌1) > 0.

Proof. Apply Lemma 504 and 𝛿 > 0.

Lemma 506 (Inverse real). For 𝛿 > 0, 𝑡 ∈ ℝ, and 𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ 𝒵𝑡 we have

ℜ( 1
1 + 𝛿 + 𝑖𝑡 − 𝜌1

) ≥ 0

Proof. Apply Lemmas 505 and 488 with 𝑧 = 1 + 𝛿 + 𝑖𝑡 − 𝜌1.

Lemma 507 (Scaled real). For 0 < 𝛿 < 1, 𝑡 ∈ ℝ, and 𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ 𝒵𝑡 we have

ℜ(
𝑚𝜌1,𝜁

1 + 𝛿 + 𝑖𝑡 − 𝜌1
) ≥ 0

Proof. Apply theorem 506 and Complex.re_nsmul with 𝑛 = 𝑚𝜌1,𝜁. Note 𝑚𝜌1,𝜁 ∈ ℕ by 251.

Lemma 508 (Double real). For 0 < 𝛿 < 1, 𝑡 ∈ ℝ, and 𝜌1 = 𝜎1 + 𝑖𝑡1 ∈ 𝒵2𝑡 we have

ℜ(
𝑚𝜌1,𝜁

1 + 𝛿 + 2𝑖𝑡 − 𝜌1
) ≥ 0

Proof. Apply Lemma 507 with 2𝑡.
Lemma 509 (Sum nonneg). For 𝑡 ∈ ℝ and 0 < 𝛿 < 1, we have

∑
𝜌1∈𝒵2𝑡

ℜ(
𝑚𝜌1,𝜁

1 + 𝛿 + 2𝑖𝑡 − 𝜌1
) ≥ 0

69



Proof. Apply Lemma 508.

Lemma 510 (Real nonneg). For 𝑡 ∈ ℝ and 0 < 𝛿 < 1, we have

ℜ( ∑
𝜌1∈𝒵2𝑡

𝑚𝜌1,𝜁
1 + 𝛿 + 2𝑖𝑡 − 𝜌1

) ≥ 0

Proof. Apply Lemmas 500 and 509.

Lemma 511 (Double bound). There exists a constant 𝐶 > 0 such that for all 0 < 𝛿 < 1 and
𝑡 ∈ ℝ, we have

ℜ (−𝑍(1 + 𝛿 + 2𝑖𝑡)) ≤ 𝐶 log(|2𝑡| + 2).
Proof. Apply Lemmas 497 and 510.

Lemma 512 (Log compare). For 𝑡 ≥ 2 we have 𝑂(log(2𝑡)) ≤ 𝑂(log 𝑡)
Proof. Apply Lemmas 1 and 4.

Lemma 513 (Trivial bound). For 𝑡 ∈ ℝ we have |2𝑡| + 2 ≥ 0.

Proof.

Lemma 514 (Log compare). For 𝑡 ∈ ℝ we have 𝑂(log(|2𝑡| + 4)) ≤ 𝑂(log(|𝑡| + 2))
Proof. Apply Lemmas 513 and 512 with 𝑤 = |𝑡| + 2.

Lemma 515 (Shift bound). There exists a constant 𝐶 > 0 such that for all 0 < 𝛿 < 1 and
𝑡 ∈ ℝ, we have

ℜ (−𝑍(1 + 𝛿 + 2𝑖𝑡)) ≤ 𝐶 log(|𝑡| + 2).
Proof. Apply Lemmas 511 and 514.

Lemma 516 (Split sum). For 0 < 𝛿 < 1, 𝜎, 𝑡 ∈ ℝ, and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵 we have

∑
𝜌1∈𝒵𝑡

ℜ(
𝑚𝜌1,𝜁

1 + 𝛿 + 𝑖𝑡 − 𝜌1
) = ℜ( 𝑚𝜌,𝜁

1 + 𝛿 + 𝑖𝑡 − 𝜌) + ∑
𝜌1∈𝒵𝑡,𝜌1≠𝜌

ℜ(
𝑚𝜌1,𝜁

1 + 𝛿 + 𝑖𝑡 − 𝜌1
).

Proof. Apply Lemma 527.

Lemma 517 (Split bound). For 0 < 𝛿 < 1, 𝜎, 𝑡 ∈ ℝ, and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵 we have

∑
𝜌1∈𝒵𝑡

ℜ(
𝑚𝜌1,𝜁

1 + 𝛿 + 𝑖𝑡 − 𝜌1
) ≥ ℜ( 1

1 + 𝛿 + 𝑖𝑡 − 𝜌).

Proof. Apply Lemmas 516 and 506. Note 𝑚𝜌1,𝜁 ≥ 1 by theorem 252.

Lemma 518 (Difference real). For 𝛿 > 0, 𝜎, 𝑡 ∈ ℝ, and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵 we have

1 + 𝛿 + 𝑖𝑡 − 𝜌 = 1 + 𝛿 − 𝜎.

Proof. We calculate 1 + 𝛿 + 𝑖𝑡 − 𝜌 = 1 + 𝛿 + 𝑖𝑡 − (𝜎 + 𝑖𝑡) = 1 + 𝛿 − 𝜎.

Lemma 519 (Real inverse). For 0 < 𝛿 < 1, 𝜎, 𝑡 ∈ ℝ, and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵 we have

ℜ( 1
1 + 𝛿 + 𝑖𝑡 − 𝜌) = ℜ( 1

1 + 𝛿 − 𝜎 )
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Proof. Apply Lemma 518.

Lemma 520 (Inverse real). For 0 < 𝛿 < 1, 𝜎 ≤ 1 we have 1
1+𝛿−𝜎 ∈ ℝ.

Proof. We calculate 1 + 𝛿 − 𝜎 ≥ 𝛿 > 0. Thus 1
1+𝛿−𝜎 ∈ ℝ.

Lemma 521 (Inverse real). For 𝛿 > 0, 𝜎, 𝑡 ∈ ℝ, and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵 we have 1
1+𝛿−𝜎 ∈ ℝ.

Proof. Apply Lemmas 490 and 520.

Lemma 522 (Real part). For 𝑥 ∈ ℝ we have ℜ(𝑥) = 𝑥.

Proof.

Lemma 523 (Real inverse). For 𝛿 > 0, 𝜎, 𝑡 ∈ ℝ, and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵 we have

ℜ( 1
1 + 𝛿 − 𝜎 ) = 1

1 + 𝛿 − 𝜎

Proof. Apply Lemmas 521 and 522 with 𝑥 = 1
1+𝛿−𝜎 .

Lemma 524 (Real inverse). For 𝛿 > 0, 𝜎, 𝑡 ∈ ℝ, and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵 we have

ℜ( 1
1 + 𝛿 + 𝑖𝑡 − 𝜌) = 1

1 + 𝛿 − 𝜎

Proof. Apply Lemmas 519 and 523

Lemma 525 (Sum bound). For 0 < 𝛿 < 1, 𝜎, 𝑡 ∈ ℝ, and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵 we have

∑
𝜌1∈𝒵𝑡

ℜ(
𝑚𝜌1,𝜁

1 + 𝛿 + 𝑖𝑡 − 𝜌1
) ≥ 1

1 + 𝛿 − 𝜎 .

Proof. Apply Lemmas 517 and 524.

Lemma 526 (Real bound). For 0 < 𝛿 < 1, 𝜎, 𝑡 ∈ ℝ, and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵 we have

ℜ( ∑
𝜌1∈𝒵𝑡

𝑚𝜌1,𝜁
1 + 𝛿 + 𝑖𝑡 − 𝜌1

) ≥ 1
1 + 𝛿 − 𝜎 .

Proof. Apply Lemmas 499 and 525.

Lemma 527 (In set). For 𝛿 > 0, 𝑡 ∈ ℝ, let 𝜌 = 1 + 𝛿 + 𝑖𝑡. If 𝜌 ∈ 𝒵, then 𝜌 ∈ 𝒵𝑡.

Proof. Let 𝑐 = 3/2 + 𝑖𝑡. Then we calculate |𝜌 − 𝑐| = |1 + 𝛿 − 3/2| = |1/2 − 𝛿| ≤ 1/2. And since
𝜌 ∈ 𝒵, we have 𝜁(𝜌) = 0. Thus |𝜌 − 𝑐| ≤ 1/2 and 𝜁(𝜌) = 0 together imply 𝜌 ∈ 𝒵𝑡.

Lemma 528 (Zeta bound). There exists a constant 𝐶 > 1 such that for all 0 < 𝛿 < 1 and 𝑡 ∈ ℝ
and 𝜌 = 𝜎 + 𝑖𝑡 ∈ 𝒵, we have

ℜ( − 𝑍(1 + 𝛿 + 𝑖𝑡)) ≤ − 1
1 + 𝛿 − 𝜎 + 𝐶 log(|𝑡| + 2).

Proof. Apply Lemma 527 so that 𝜌 ∈ 𝒵 implies 𝜌 ∈ 𝒵𝑡. Then apply 496 and 526.
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Lemma 529 (At one). For 𝛿 > 0 we have

−𝑍(1 + 𝛿) = 1
𝛿 + 𝑂(1).

Proof.

Lemma 530 (Real one). For 𝛿 > 0 we have

ℜ( − 𝑍(1 + 𝛿)) = 1
𝛿 + 𝑂(1).

Proof. Apply Lemma 529.

Lemma 531 (One bound). There exists a constant 𝐶 > 0 such that for all 𝛿 > 0 we have

∣𝑍(1 + 𝛿) − 1
𝛿 ∣ ≤ 𝐶.

Proof. By Lemma 529.

Lemma 532 (Real bound). There exists a constant 𝐶 > 0 such that for all 𝛿 > 0 we have

ℜ( − 𝑍(1 + 𝛿) − 1
𝛿 ) ≤ 𝐶.

Proof. By Lemma 531 and Mathlib Complex.re_le_abs for 𝑧 = 𝑍(1 + 𝛿) + 1
𝛿 .

Lemma 533 (Real sum). There exists a constant 𝐶 > 0 such that for all 𝛿 > 0 we have

ℜ( − 𝑍(1 + 𝛿)) + ℜ( − 1
𝛿 ) ≤ 𝐶.

Proof. By Lemma 532 and Mathlib: Complex.add_re with 𝑧 = −𝑍(1 + 𝛿) and 𝑤 = − 1
𝛿 .

Lemma 534 (Real diff). There exists a constant 𝐶 > 0 such that for all 𝛿 > 0 we have

ℜ( − 𝑍(1 + 𝛿)) − 1
𝛿 ≤ 𝐶.

Proof. By Lemma 533 and Mathlib: RCLike.re_to_real with 𝑥 = 1/𝛿, since 1/𝛿 ∈ ℝ.

Lemma 535 (Combined bound). There exists a constant 𝐶 > 0 such that for all 0 < 𝛿 < 1 and
𝑡 ∈ ℝ with |𝑡| > 3, if 𝜎 + 𝑖𝑡 ∈ 𝒵 then

3ℜ( − 𝑍(1 + 𝛿)) + 4ℜ( − 𝑍(1 + 𝛿 + 𝑖𝑡)) + ℜ( − 𝑍(1 + 𝛿 + 2𝑖𝑡))

≤ 3
𝛿 − 4

1 + 𝛿 − 𝜎 + 𝐶 log(|𝑡| + 2)

Proof. Apply Lemmas 532 and 528 and 515

Lemma 536 (Series form). Let 𝑠 ∈ ℂ. If Re(𝑠) > 1 then

−𝑍(𝑠) =
∞

∑
𝑛=1

Λ(𝑛) 𝑛−𝑠
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Proof. Apply definition 484 for 𝑍(𝑠) and LSeries_vonMangoldt_eq_deriv_riemannZeta_div
from Mathlib/NumberTheory/LSeries/Dirichlet.lean

Lemma 537 (Series form). For 𝑥, 𝑦 ∈ ℝ, if 𝑥 > 1 then

−𝑍(𝑥 + 𝑖𝑦) =
∞

∑
𝑛=1

Λ(𝑛) 𝑛−(𝑥+𝑖𝑦)

Proof. Let 𝑠 = 𝑥 + 𝑖𝑦 so that Re(𝑠) = 𝑥 > 1. Apply Lemma 536 with 𝑠 = 𝑥 + 𝑖𝑦.

Lemma 538 (Converges). Let 𝑥, 𝑦 ∈ ℝ. If 𝑥 > 1 then 𝑍(𝑥 + 𝑖𝑦) converges.

Proof. Apply definition 484 for 𝑍(𝑥 + 𝑖𝑦).
Lemma 539 (Real converges). Let 𝑥, 𝑦 ∈ ℝ. If 𝑥 > 1 then ℜ( − 𝑍(𝑥 + 𝑖𝑦)) converges.

Proof. Apply Lemma 538.

Lemma 540 (Exponent split). For any 𝑛 ≥ 1 and 𝑥, 𝑦 ∈ ℝ we have 𝑛−(𝑥+𝑖𝑦) = 𝑛−𝑥𝑛−𝑖𝑦.

Proof. Use −(𝑥 + 𝑖𝑦) = −𝑥 − 𝑖𝑦, and Lemma 5 with 𝛼 = −𝑥 and 𝛽 = −𝑖𝑦.

Lemma 541 (Series split). For 𝑥, 𝑦 ∈ ℝ, if 𝑥 > 1 then

−𝑍(𝑥 + 𝑖𝑦) =
∞

∑
𝑛=1

Λ(𝑛) 𝑛−𝑥𝑛−𝑖𝑦

Proof. Apply Lemmas 537 and 540.

Lemma 542 (Series converges). Let 𝑥, 𝑦 ∈ ℝ. If 𝑥 > 1 then ∑∞
𝑛=1 Λ(𝑛) 𝑛−𝑥𝑛−𝑖𝑦 converges.

Proof. Apply Lemmas 538 and 541.

Lemma 543 (Real terms). For 𝑛, 𝑥 ≥ 1 we have Λ(𝑛) 𝑛−𝑥 ≥ 0
Proof. Proven by definition of von Mangoldt Λ(𝑛) ≥ 0 and 𝑛−𝑥 ≥ 0.

Lemma 544 (Real sum). We have ℜ( ∑∞
𝑛=1 Λ(𝑛) 𝑛−𝑥𝑛−𝑖𝑦) = ∑∞

𝑛=1 ℜ(Λ(𝑛) 𝑛−𝑥𝑛−𝑖𝑦)

Proof. Apply Lemmas 542 and 7.

Lemma 545 (Series real). For 𝑥 > 1 and 𝑦 ∈ ℝ, we have ℜ(−𝑍(𝑥+𝑖𝑦)) = ∑∞
𝑛=1 ℜ(Λ(𝑛) 𝑛−𝑥𝑛−𝑖𝑦)

Proof. Apply Lemmas 541 and 544.

Lemma 546 (Real factor). For 𝑥 > 1 and 𝑦 ∈ ℝ, we have ℜ(Λ(𝑛) 𝑛−𝑥𝑛−𝑖𝑦) = Λ(𝑛) 𝑛−𝑥 ℜ(𝑛−𝑖𝑦).
Proof. Let 𝑏 = Λ(𝑛) 𝑛−𝑥. By Lemma 543 𝑏 ∈ ℝ. Apply Lemma 6 with 𝑏 = Λ(𝑛) 𝑛−𝑥 and
𝑧 = 𝑛−𝑖𝑦.

Lemma 547 (Real series). For 𝑥 > 1 and 𝑦 ∈ ℝ, we have ℜ(−𝑍(𝑥+𝑖𝑦)) = ∑∞
𝑛=1 Λ(𝑛) 𝑛−𝑥 ℜ(𝑛−𝑖𝑦)

Proof. Apply Lemmas 545 and 546.

Lemma 548 (Cos form). For 𝑥 > 1 and 𝑦 ∈ ℝ, ℜ( − 𝑍(𝑥 + 𝑖𝑦)) = ∑∞
𝑛=1 Λ(𝑛)𝑛−𝑥 cos(𝑦 log 𝑛).

Proof. Apply Lemmas 547 and 16

73



Lemma 549 (Cos series). For 𝑥 > 1 and 𝑦 ∈ ℝ, ∑∞
𝑛=1 Λ(𝑛)𝑛−𝑥 cos(𝑦 log 𝑛) converges.

Proof. Apply Lemmas 539 and 548.

Lemma 550 (Double cos). For 𝑥 > 1 and 𝑡 ∈ ℝ, ∑∞
𝑛=1 Λ(𝑛)𝑛−𝑥 cos(2𝑡 log 𝑛) converges.

Proof. Apply Lemma 549 with 𝑦 = 2𝑡.
Lemma 551 (Zero cos). For 𝑛 ≥ 1, if 𝑡 = 0 then cos(𝑡 log 𝑛) = 1.

Proof. For 𝑡 = 0, we calculate cos(𝑡 log 𝑛) = cos(0 log 𝑛) = cos(0) = 1.

Lemma 552 (Zero series). For 𝑥 > 1, ∑∞
𝑛=1 Λ(𝑛)𝑛−𝑥 converges.

Proof. Apply Lemma 549 with 𝑦 = 0, and Lemma 551.

Lemma 553 (Delta series). For 𝑡 ∈ ℝ and 𝛿 > 0,

Re( − 𝑍(1 + 𝛿 + 𝑖𝑡)) =
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) cos(𝑡 log 𝑛)

Proof. Apply Lemma 548 with 𝑥 = 1 + 𝛿 and 𝑦 = 𝑡. Note 𝑥 > 1 since 𝛿 > 0.

Lemma 554 (Delta double). For 𝑡 ∈ ℝ and 𝛿 > 0, we have

Re( − 𝑍(1 + 𝛿 + 2𝑖𝑡)) =
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) cos(2𝑡 log 𝑛)

Proof. Apply Lemma 548 with 𝑥 = 1 + 𝛿 and 𝑦 = 2𝑡. Note 𝑥 > 1 since 𝛿 > 0.

Lemma 555 (Delta zero). Let 𝛿 > 0. We have

Re( − 𝑍(1 + 𝛿)) =
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿)

Proof. Apply Lemma 548 with 𝑡 = 0, and Lemma 551.

Lemma 556 (341 series). For 𝑡 ∈ ℝ and 𝛿 > 0, we have

3ℜ( − 𝑍(1 + 𝛿)) + 4ℜ( − 𝑍(1 + 𝛿 + 𝑖𝑡)) + ℜ( − 𝑍(1 + 𝛿 + 2𝑖𝑡))

= 3
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) + 4
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) cos(𝑡 log 𝑛) +
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) cos(2𝑡 log 𝑛).

Proof. Apply Lemmas 555 and 553 and 554.

Lemma 557 (Sum converges). For 𝑡 ∈ ℝ and 𝛿 > 0,

3
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) + 4
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) cos(𝑡 log 𝑛) +
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) cos(2𝑡 log 𝑛)

converges.

Proof. Apply Lemmas 552 and 549 and 550.
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Lemma 558 (Factor form). For 𝑡 ∈ ℝ and 𝛿 > 0, we have

3
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) + 4
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) cos(𝑡 log 𝑛) +
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿) cos(2𝑡 log 𝑛)

=
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿)(3 + 4 cos(𝑡 log 𝑛) + cos(2𝑡 log 𝑛)).

Proof. Apply Lemmas 552 and 549 and 550.

Lemma 559 (Factor conv). For 𝑡 ∈ ℝ and 𝛿 > 0,

∞
∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿)(3 + 4 cos(𝑡 log 𝑛) + cos(2𝑡 log 𝑛))

converges.

Proof. Apply Lemmas 557 and 558.

Lemma 560 (Series equal). For 𝑡 ∈ ℝ and 𝛿 > 0, we have

3ℜ( − 𝑍(1 + 𝛿)) + 4ℜ( − 𝑍(1 + 𝛿 + 𝑖𝑡)) + ℜ( − 𝑍(1 + 𝛿 + 2𝑖𝑡))

=
∞

∑
𝑛=1

Λ(𝑛)𝑛−(1+𝛿)(3 + 4 cos(𝑡 log 𝑛) + cos(2𝑡 log 𝑛)).

Proof. Apply Lemmas 556 and 558

Lemma 561 (Term nonneg). For 𝑛 ≥ 1, 𝛿 > 0, and 𝑡 ∈ ℝ, we have 0 ≤ Λ(𝑛) 𝑛−(1+𝛿)(3 +
4 cos(𝑡 log 𝑛) + cos(2𝑡 log 𝑛)).
Proof. Apply Lemmas 25 and 543 with 𝑥 = 1 + 𝛿.

Lemma 562 (Series nonneg). For 𝑡 ∈ ℝ and 𝛿 > 0, we have

0 ≤
∞

∑
𝑛=1

Λ(𝑛) 𝑛−(1+𝛿)(3 + 4 cos(𝑡 log 𝑛) + cos(2𝑡 log 𝑛))

Proof. Apply Lemmas 559, 561, 25, and 26 with 𝑟𝑛 = Λ(𝑛) 𝑛−(1+𝛿)(3+4 cos(𝑡 log 𝑛)+cos(2𝑡 log 𝑛)).

Lemma 563 (Positive sum). For 𝑡 ∈ ℝ and 𝛿 > 0, we have

0 ≤ 3ℜ( − 𝑍(1 + 𝛿)) + 4ℜ( − 𝑍(1 + 𝛿 + 𝑖𝑡)) + ℜ( − 𝑍(1 + 𝛿 + 2𝑖𝑡))

Proof. Apply Lemmas 560 and 562.

Lemma 564 (Inequality). There exists a constant 𝐶 > 1 such that, for any 𝜎 + 𝑖𝑡 ∈ 𝒵,

4
1 − 𝜎 + 1/(2𝐶 log(|𝑡| + 2)) ≤ 7𝐶 log(|𝑡| + 2)

Proof. Apply Lemmas 535 and 563 with 𝛿 = 1/(2𝐶 log(|𝑡| + 2)).
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Lemma 565 (Rearranged). There exists a constant 𝐶 > 0 such that, for any 𝜎 + 𝑖𝑡 ∈ 𝒵,

1 − 𝜎 + 1/(2𝐶 log(|𝑡| + 2)) ≥ 4/(7𝐶 log(|𝑡| + 2))

Proof. Apply Lemma 564.

Lemma 566 (Final bound). There exists a constant 𝐶 > 0 such that, for any 𝜎 + 𝑖𝑡 ∈ 𝒵,

1 − 𝜎 ≥ 1/(14𝐶 log(|𝑡| + 2))

Proof. Apply Lemma 565.

Lemma 567 (Zero free). There exists a constant 1 > 𝑐 > 0 such that if 𝜁(𝜎 + 𝑖𝑡) = 0 and |𝑡| > 3
for some 𝜎, 𝑡 ∈ ℝ, then 𝜎 ≤ 1 − 𝑐

log(|𝑡|+2) .

Proof. Apply Lemma 566 with 𝑐 = 1/(14𝐶), and Definition 485 of 𝒵.

4.1 Bound on 𝜁′/𝜁
Definition 568 (Delta zeros). For 𝑡 ∈ ℝ and 0 < 𝛿 < 1/9, define

𝒴𝑡(𝛿) = {𝜌1 ∈ ℂ ∶ 𝜁(𝜌1) = 0 and |𝜌1 − (1 − 𝛿 + 𝑖𝑡)| ≤ 2𝛿}.

Definition 569 (Delta def). Let 0 < 𝑎 < 1 be the constant in 567. For 𝑧 ∈ ℂ with |ℑ(𝑧)| > 2,
define the function 𝛿(𝑧) = 𝑎/20

log(|ℑ(𝑧)|+2) . For 𝑡 ∈ ℝ define 𝛿𝑡 = 𝛿(𝑖𝑡).

Lemma 570 (Delta range). For 𝑧 ∈ ℂ we have 0 < 𝛿(𝑧) < 1/9. For 𝑡 ∈ ℝ we have 0 < 𝛿𝑡 < 1/9.

Proof. Unfold theorem 569.

Lemma 571 (Zero free). For 𝑧 ∈ ℂ, if ℜ(𝑧) > 1 − 9𝛿(𝑧) then 𝜁(𝑧) ≠ 0.

Proof. Unfold definition of 𝛿(𝑧) in theorem 569, and apply contrapositive of theorem 567.

Lemma 572 (Disk inclusion). Let 𝑡 ∈ ℝ with |𝑡| > 3. For 𝑐 = 3/2 + 𝑖𝑡 and 𝑧 = 𝜎 + 𝑖𝑡 with
1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2, we have 𝑧 ∈ 𝔻2/3(𝑐).
Proof. We calculate |𝑧 − 𝑐| = |𝜎 − 3/2| ≤ 1/2 + 𝛿𝑡. Note 𝛿𝑡 ≤ 1/9 by theorem 570. Hence
|𝑧 − 𝑐| ≤ 2/3.

Lemma 573 (Not zero). Let 𝑡 ∈ ℝ with |𝑡| > 3. For 𝑐 = 3/2 + 𝑖𝑡 and 𝑧 = 𝜎 + 𝑖𝑡 with
1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2, we have 𝑧 ∉ 𝒦𝜁(5/6; 𝑐).
Proof. Since ℜ(𝑧) = 𝜎 ≥ 1 − 𝛿𝑡 = 1 − 𝛿(𝑧), we have 𝜁(𝑧) ≠ 0 by theorem 571. Thus 𝑧 ∉
𝒦𝜁(5/6; 𝑐).
Lemma 574 (Expansion). There exists a constant 𝐶1 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| > 3,
letting 𝑐 = 3/2 + 𝑖𝑡, and all 𝑧 = 𝜎 + 𝑖𝑡 with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have

∣ 𝜁
′(𝑧)

𝜁(𝑧) − ∑
𝜌∈𝒦𝜁(5/6;𝑐)

𝑚𝜌,𝜁
𝑧 − 𝜌 ∣ ≤ 𝐶1 log |𝑡|
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Proof. Apply theorem 483 with 𝑧 = 𝜎+𝑖𝑡, 𝑟1 = 2/3, 𝑟 = 3/4, and choosing 𝐶1 = 𝐶 ( 1
(𝑟−𝑟1)3 + 1).

Note 𝑧 ∈ 𝔻𝑟1
(𝑐) ∖ 𝒦𝜁(5/6; 𝑐) by theorems 572 and 573.

Lemma 575 (Distance real). For 𝑧, 𝜌 ∈ ℂ we have |𝑧 − 𝜌| ≥ ℜ(𝑧) − ℜ(𝜌)
Proof. Apply Mathlib: Complex.re_le_abs and then Complex.sub_re to calculate |𝑧 − 𝜌| ≥
ℜ(𝑧 − 𝜌) = ℜ(𝑧) − ℜ(𝜌).
Lemma 576 (Real bound). For 𝑡 ∈ ℝ with |𝑡| > 3 and 𝜌 ∈ 𝒦𝜁(5/6; 3/2 + 𝑖𝑡) we have ℜ(𝜌) ≤
1 − 9𝛿(𝜌).
Proof. By definition 𝜌 ∈ 𝒦𝜁(5/6; 3/2 + 𝑖𝑡) implies 𝜁(𝜌) = 0. Then 𝜁(𝜌) = 0 implies ℜ(𝜌) ≤
1 − 9𝛿(𝜌) by the contrapositive of theorem 571.

Lemma 577 (Imag bound). For 𝑡 ∈ ℝ with |𝑡| > 3 and 𝑧 ∈ 𝔻5/6(3/2 + 𝑖𝑡), we have |ℑ(𝑧)| ≤
|𝑡| + 5/6.

Proof. Unfold definition of 𝔻2𝛿𝑡
(1 − 𝛿𝑡 + 𝑖𝑡).

Lemma 578 (Imag growth). For 𝑡 ∈ ℝ with |𝑡| > 3 and 𝑧 ∈ 𝔻5/6(3/2 + 𝑖𝑡), we have |ℑ(𝑧)| + 2 ≤
(|𝑡| + 2)3.

Proof. Apply theorem 577 and 3 < |𝑡|.
Lemma 579 (Log bound). For 𝑡 ∈ ℝ with |𝑡| > 3 and 𝑧 ∈ 𝔻5/6(3/2+𝑖𝑡), we have log(|ℑ(𝑧)|+2) ≤
3 log(|𝑡| + 2).
Proof. Apply theorem 578 and Mathlib: Real.log_le_log

Lemma 580 (Log compare). For 𝑡 ∈ ℝ with |𝑡| > 3 and 𝑧 ∈ 𝔻5/6(3/2 + 𝑖𝑡), we have 1/ log(|𝑡| +
2) ≤ 3/ log(|ℑ(𝑧)| + 2).
Proof. Apply theorem 579 and Mathlib: one_div_le_one_div

Lemma 581 (Delta compare). For 𝑡 ∈ ℝ with |𝑡| > 3 and 𝑧 ∈ 𝔻5/6(3/2+𝑖𝑡), we have 𝛿𝑡 ≤ 3𝛿(𝑧).
Proof. Unfold definitions of 𝛿𝑡 and 𝛿(𝑧) from theorem 569. Then apply theorem 580.

Lemma 582 (Delta bound). Let 𝑡 ∈ ℝ with |𝑡| > 3, and 𝑐 = 3/2 + 𝑖𝑡. For all 𝜌 ∈ 𝒦𝜁(5/6; 𝑐) we
have 𝛿(𝜌) ≥ 1

3 𝛿𝑡

Proof. Apply theorem 581 with 𝑧 = 𝜌. Note 𝒦𝜁(5/6; 𝑐) ⊂ 𝔻5/6(𝑐).
Lemma 583 (Real bound). Let 𝑡 ∈ ℝ with |𝑡| > 3, and 𝑐 = 3/2 + 𝑖𝑡. For all 𝜌 ∈ 𝒦𝜁(5/6; 𝑐) we
have ℜ(𝜌) ≤ 1 − 3𝛿𝑡

Proof. Apply theorems 576 and 582.

Lemma 584 (Gap bound). Let 𝑡 ∈ ℝ with |𝑡| > 3, and 𝑐 = 3/2 + 𝑖𝑡. For all 𝜌 ∈ 𝒦𝜁(5/6; 𝑐) and
𝑧 = 𝜎 + 𝑖𝑡 with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have ℜ(𝑧) − ℜ(𝜌) ≥ 2𝛿𝑡.

Proof. Apply theorem 583, and calculate ℜ(𝑧) − ℜ(𝜌) ≥ (1 − 𝛿𝑡) − (1 − 3𝛿𝑡) = 2𝛿𝑡.

Lemma 585 (Gap size). Let 𝑡 ∈ ℝ with |𝑡| > 3, and 𝑐 = 3/2 + 𝑖𝑡. For all 𝜌 ∈ 𝒦𝜁(5/6; 𝑐) and
𝑧 = 𝜎 + 𝑖𝑡 with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have |𝑧 − 𝜌| ≥ 2𝛿𝑡.

77



Proof. Apply theorems 575 and 584

Lemma 586 (Nonzero gap). Let 𝑡 ∈ ℝ with |𝑡| > 3, and 𝑐 = 3/2 + 𝑖𝑡. For all 𝜌 ∈ 𝒦𝜁(5/6; 𝑐)
and 𝑧 = 𝜎 + 𝑖𝑡 with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have |𝑧 − 𝜌| > 0.

Proof. Apply theorems 570 and 585.

Lemma 587 (Inverse gap). Let 𝑡 ∈ ℝ with |𝑡| > 3, and 𝑐 = 3/2 + 𝑖𝑡. For all 𝜌 ∈ 𝒦𝜁(5/6; 𝑐) and
𝑧 = 𝜎 + 𝑖𝑡 with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have 1

|𝑧−𝜌| ≤ 1
2𝛿𝑡

.

Proof. Apply theorem 585 and Mathlib: one_div_le_one_div with theorem 570.

Lemma 588 (Order nat). For 𝑡 ∈ ℝ with |𝑡| > 3, let 𝑐 = 3/2 + 𝑖𝑡. Then 𝑚𝜌,𝜁 ∈ ℕ for all
𝜌 ∈ 𝐾𝜁(5/6; 𝑐).

Proof. Apply theorems 251 and 474 with 𝜁, 𝑅1 = 5/6, 𝑅 = 8/9. Note 𝜁 AnalyticOnNhd 𝔻1(𝑐)
by theorem 467. Also 𝜁(𝑐) ≠ 0 by theorem 469

Lemma 589 (Finite set). For 𝑡 ∈ ℝ with |𝑡| > 3, let 𝑐 = 3/2 + 𝑖𝑡. Then 𝐾𝜁(5/6; 𝑐) is finite.

Proof. Apply theorems 249 and 473 with 𝜁, 𝑅1 = 5/6, 𝑅 = 8/9. Note 𝜁 AnalyticOnNhd 𝔻1(𝑐)
by theorem 467. Also 𝜁(𝑐) ≠ 0 by theorem 469

Lemma 590 (Triangle). For all 𝑡 ∈ ℝ with |𝑡| > 3, letting 𝑐 = 3/2 + 𝑖𝑡, and all 𝑧 = 𝜎 + 𝑖𝑡 with
1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have

∣ ∑
𝜌∈𝒦𝜁(5/6;𝑐)

𝑚𝜌,𝜁
𝑧 − 𝜌 ∣ ≤ ∑

𝜌∈𝒦𝜁(5/6;𝑐)

𝑚𝜌,𝜁
|𝑧 − 𝜌|

Proof. Apply Mathlib: Finset.abs_sum_le_sum_ab. Note 𝒦𝜁(5/6; 𝑐) is finite by theorem 589.
Then apply Mathlib: abs_div with theorem 586. Note 𝑚𝜌,𝜁 ∈ ℕ by theorem 588.

Lemma 591 (Triangle). There exists a constant 𝐶1 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| > 3,
letting 𝑐 = 3/2 + 𝑖𝑡, and all 𝑧 = 𝜎 + 𝑖𝑡 with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have

∣ 𝜁
′(𝑧)

𝜁(𝑧) ∣ ≤ ∑
𝜌∈𝒦𝜁(5/6;𝑐)

𝑚𝜌,𝜁
|𝑧 − 𝜌| + 𝐶1 log |𝑡|

Proof. Apply theorems 574 and 590.

Lemma 592 (Sum bound). For all 𝑡 ∈ ℝ with |𝑡| > 3, letting 𝑐 = 3/2 + 𝑖𝑡, and all 𝑧 = 𝜎 + 𝑖𝑡
with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have

∑
𝜌∈𝒦𝜁(5/6;𝑐)

𝑚𝜌,𝜁
|𝑧 − 𝜌| ≤ 1

2𝛿𝑡
∑

𝜌∈𝒦𝜁(5/6;𝑐)
𝑚𝜌,𝜁

Proof. Apply theorem 587.

Lemma 593 (Order bound). Let 𝐵 > 1, 0 < 𝑅1 < 𝑅 < 1, and 𝑓 ∶ ℂ → ℂ be a function that
is AnalyticOnNhd 𝔻1(𝑐). If 𝑓(𝑐) ≠ 0 and |𝑓(𝑧)| ≤ 𝐵 on 𝑧 ∈ 𝔻𝑅(𝑐), then ∑𝜌∈𝒦𝑓(𝑅1;𝑐) 𝑚𝜌,𝑓 ≤
log(𝐵/|𝑓(𝑐)|)
log(𝑅/𝑅1) .
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Proof. Use the conditions from theorems 472 to 474 with 𝑓 = 𝜁, and then apply theorem 324
with 𝜁𝑐(𝑧) = 𝜁(𝑧 + 𝑐)/𝜁(𝑐). Note 𝜁 is AnalyticOnNhd 𝔻1(𝑐) by theorem 467. Also 𝜁(𝑐) ≠ 0 by
theorem 469.

Lemma 594 (Order sum). There exists a constant 𝐶2 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| > 3,
letting 𝑐 = 3/2 + 𝑖𝑡, we have ∑𝜌∈𝒦𝜁(5/6;𝑐) 𝑚𝜌,𝜁 ≤ 𝐶2 log |𝑡|

Proof. Apply theorem 593 with 𝑅1 = 5/6, 𝑅 = 8/9. Then by theorem 481, we set 𝐵 = 𝑏|𝑡|. Thus
log(𝐵/|𝑓(𝑐)|) ≤ log |𝑡|+ log(𝑏/|𝑓(𝑐)|). Thus we may choose 𝐶2 = 2(1+ log(𝑏/|𝑓(𝑐)|))/ log(𝑅/𝑅1).

Lemma 595 (Sum bound). There exists a constant 𝐶3 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| > 3,
letting 𝑐 = 3/2 + 𝑖𝑡, and all 𝑧 = 𝜎 + 𝑖𝑡 with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have

∑
𝜌∈𝒦𝜁(5/6;𝑐)

𝑚𝜌,𝜁
|𝑧 − 𝜌| ≤ 𝐶3

𝛿𝑡
log |𝑡|

Proof. Apply theorems 592 and 594.

Lemma 596 (Sum bound). There exists a constant 𝐶4 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| > 3,
letting 𝑐 = 3/2 + 𝑖𝑡, and all 𝑧 = 𝜎 + 𝑖𝑡 with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2 we have

∑
𝜌∈𝒦𝜁(5/6;𝑐)

𝑚𝜌,𝜁
|𝑧 − 𝜌| ≤ 𝐶4 log |𝑡|2

Proof. Apply theorems 569 and 595.

Lemma 597 (Log bound). There exists a constant 𝐶 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| > 3,
and all 𝑠 = 𝜎 + 𝑖𝑡 with 1 − 𝛿𝑡 ≤ 𝜎 ≤ 3/2, we have

∣ 𝜁
′

𝜁 (𝑠)∣ ≤ 𝐶 log |𝑡|2

Proof. Apply theorems 323, 591 and 596.

Lemma 598 (Log bound). There exist constants 0 < 𝐴 < 1 and 𝐶 > 1 such that for all 𝑡 ∈ ℝ
with |𝑡| > 3, and all 𝑠 = 𝜎 + 𝑖𝑡 with 1 − 𝐴/ log(|𝑡| + 2) ≤ 𝜎 ≤ 3/2, we have

∣ 𝜁
′

𝜁 (𝑠)∣ ≤ 𝐶 log |𝑡|2

Proof. Apply theorems 569 and 597.

Lemma 599 (Real bound). Let 𝑡 ∈ ℝ. If 𝑧 ∈ 𝔻2𝛿𝑡
(1 − 𝛿𝑡 + 𝑖𝑡) then ℜ(𝑧) > 1 − 4𝛿𝑡

Proof. Apply theorem 612 with 𝛿 = 𝛿𝑡.

Lemma 600 (Real bound). For 𝑡 ∈ ℝ with |𝑡| > 3 and 𝑧 ∈ 𝔻2𝛿𝑡
(1 − 𝛿𝑡 + 𝑖𝑡), we have ℜ(𝑧) ≥

1 − 6𝛿(𝑧)
Proof. Apply theorems 581 and 599.

Lemma 601 (In disk). For 𝑡 ∈ ℝ with |𝑡| > 3 we have 𝒴𝑡(𝛿𝑡) ⊂ 𝔻2𝛿𝑡
(1 − 𝛿𝑡 + 𝑖𝑡).
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Proof. Unfold definition of 𝒴𝑡(𝛿𝑡) in theorem 568

Lemma 602 (Zero set). Let 𝑡 ∈ ℝ and 𝛿 > 0. If 𝜌1 ∈ 𝒴𝑡(𝛿) then 𝜁(𝜌1) = 0.

Proof. Unfold definition 568 for 𝒴𝑡(𝛿).
Lemma 603 (Real abs). For 𝑤 ∈ ℂ we have |ℜ(𝑤)| ≤ |𝑤|
Proof. Mathlib (try Complex.abs_re_le_abs)

Lemma 604 (Real diff). Let 𝑡 ∈ ℝ, 1/9 > 𝛿 > 0 and 𝑧 ∈ ℂ. Then |ℜ(𝑧 − (1 − 𝛿 + 𝑖𝑡))| ≤
|𝑧 − (1 − 𝛿 + 𝑖𝑡)|
Proof. Apply Lemma 603 with 𝑤 = 𝑧 − (1 − 𝛿 + 𝑖𝑡).
Lemma 605 (Real diff). Let 𝑡 ∈ ℝ, 1/9 > 𝛿 > 0 and 𝑧 ∈ ℂ. If |𝑧 − (1 − 𝛿 + 𝑖𝑡)| ≤ 𝛿/2 then
|ℜ(𝑧 − (1 − 𝛿 + 𝑖𝑡))| ≤ 𝛿/2.

Proof. Apply Lemma 604.

Lemma 606 (Real diff). Let 𝑡 ∈ ℝ and 1/9 > 𝛿 > 0 and 𝑧 ∈ ℂ. We have ℜ(𝑧 − (1 − 𝛿 + 𝑖𝑡)) =
ℜ(𝑧) − (1 − 𝛿)
Proof.

Lemma 607 (Real diff). Let 𝑡 ∈ ℝ, 1/9 > 𝛿 > 0 and 𝑧 ∈ ℂ. If |𝑧 − (1 − 𝛿 + 𝑖𝑡)| ≤ 𝛿/2 then
|ℜ(𝑧) − (1 − 𝛿)| ≤ 𝛿/2
Proof. Apply Lemmas 605 and 606.

Lemma 608 (Neg bound). Let 𝑎 ∈ ℝ and 𝑏 > 0. If |𝑎| ≤ 𝑏 then 𝑎 ≥ −𝑏.

Proof. Mathlib (try neg_le_of_abs_le)

Lemma 609 (Real bound). Let 1/9 > 𝛿 > 0 and 𝑧 ∈ ℂ. If |ℜ(𝑧) − (1 − 𝛿)| ≤ 𝛿/2 then
ℜ(𝑧) − (1 − 𝛿) ≥ −𝛿/2
Proof. 608 with 𝑎 = ℜ(𝑧) − (1 − 𝛿) and 𝑏 = 𝛿/2.

Lemma 610 (Real bound). Let 0 < 𝛿 < 1/9 and 𝑧 ∈ ℂ. If |ℜ(𝑧) − (1 − 𝛿)| ≤ 2𝛿 then
ℜ(𝑧) ≥ 1 − 3𝛿
Proof. Apply Lemma 609 and then add 1 − 𝛿 to both sides.

Lemma 611 (Real bound). Let 0 < 𝛿 < 1/9 and 𝑧 ∈ ℂ. If |ℜ(𝑧) − (1 − 𝛿)| ≤ 2𝛿 then
ℜ(𝑧) > 1 − 4𝛿
Proof. Apply Lemma 610, and then use 1 − 3

2 𝛿 > 1 − 2𝛿, since 𝛿 > 0.

Lemma 612 (Real bound). Let 𝑡 ∈ ℝ, 0 < 𝛿 < 1/9 and 𝑧 ∈ ℂ. If |𝑧 − (1 − 𝛿 + 𝑖𝑡)| ≤ 2𝛿 then
ℜ(𝑧) > 1 − 4𝛿.

Proof. Apply Lemmas 607 and 611.

Lemma 613 (Empty set). For 𝑡 ∈ ℝ with |𝑡| > 3 we have 𝒴𝑡(𝛿𝑡) = ∅.

Proof.
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Lemma 614 (Empty sum). For any 𝑔 ∶ ℂ → ℂ, if 𝑆 = ∅ then

∑
𝑠∈𝑆

𝑔(𝑠) = 0

Proof. Mathlib (try Mathlib.Meta.NormNum.Finset.sum_empty)

Lemma 615 (Zero sum). For 𝑡 ∈ ℝ with |𝑡| > 3 we have

∑
𝜌1∈𝒴𝑡(𝛿𝑡)

𝑚𝜌1,𝜁
1 − 𝛿𝑡 + 𝑖𝑡 − 𝜌1

= 0.

Proof. Apply Lemmas 613 and 614 with 𝑔(𝑠) = 𝑚𝜌1,𝜁
1−𝛿𝑡+𝑖𝑡−𝑠 and 𝑆 = 𝒴𝑡(𝛿𝑡).

Lemma 616 (Center bound). For 𝜎 ≥ 3/2 and 𝑡 ∈ ℝ we have | 𝜁′

𝜁 (𝜎 + 𝑖𝑡)| ≤ | 𝜁′

𝜁 (𝜎)|

Proof. By Mathlib: ArithmeticFunction.LSeries_vonMangoldt_eq_deriv_riemannZeta_div
we have − 𝜁′

𝜁 (𝜎 + 𝑖𝑡) = ∑∞
𝑛=1

Λ(𝑛)
𝑛𝑠 .

Note this series is summable by Mathlib: ArithmeticFunction.LSeriesSummable_vonMangoldt
Then apply Mathlib: norm_tsum_le_tsum_norm so that | 𝜁′

𝜁 (𝜎 + 𝑖𝑡)| ≤ ∑∞
𝑛=1

Λ(𝑛)
|𝑛𝑠| .

Observe |𝑛𝑠| = 𝑛ℜ(𝑠)𝑒− Arg(𝑠)ℑ(𝑛) by Mathlib: Complex.abs_cpow_le. Note 𝑛 ∈ ℝ so ℑ(𝑛) = 0
by imaginaryPart_ofReal. Thus 𝑒− Arg(𝑠)ℑ(𝑛) = 𝑒0 = 1. And ℜ(𝑠) = 𝜎. Hence |𝑛𝑠| = 𝑛𝜎.

Thus | 𝜁′

𝜁 (𝜎 + 𝑖𝑡)| ≤ ∑∞
𝑛=1

Λ(𝑛)
𝑛𝜎 .

Again by Mathlib: ArithmeticFunction.LSeries_vonMangoldt_eq_deriv_riemannZeta_div
we have∑∞

𝑛=1
Λ(𝑛)
𝑛𝜎 = − 𝜁′

𝜁 (𝜎).
Take absolute values to get | 𝜁′

𝜁 (𝜎 + 𝑖𝑡)| ≤ | 𝜁′

𝜁 (𝜎)|.

Lemma 617 (Log bound). There exists a constant 𝐶 > 1 such that for all 𝑡 ∈ ℝ with |𝑡| > 3,
and all 𝑠 = 𝜎 + 𝑖𝑡 with 𝜎 ≥ 3/2, we have

∣ 𝜁
′

𝜁 (𝑠)∣ ≤ 𝐶

Proof. Apply theorem 616 and then theorem 531.

Theorem 618 (Bound on 𝜁′/𝜁). There exist constants 0 < 𝐴 < 1 and 𝐶 > 1 such that for any
𝑡 ∈ ℝ with |𝑡| > 3 and 𝜎 ≥ 1 − 𝐴/ log(|𝑡| + 2), we have

∣ 𝜁
′

𝜁 (𝜎 + 𝑖𝑡)∣ ≤ 𝐶 log |𝑡|2.

Proof. Apply theorems 323, 598 and 617

Lemma 619 (Zero-free region near 1). There exists a constant 𝐴 ∈ (0, 1
2 ) such that for every

real 𝑡 with |𝑡| > 3 and every real 𝜎 with

𝜎 ∈ [1 − 𝐴/ log |𝑡|, 1),

we have
𝜁(𝜎 + 𝑖𝑡) ≠ 0.

In other words, a uniform zero-free region of the form ℜ𝑠 ≥ 1 − 𝐴/ log |ℑ𝑠| holds for large |ℑ𝑠|.
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Proof.

Lemma 620 (Uniform bound on the logarithmic derivative of 𝜁). There exist constants 𝐴 ∈
(0, 1

2 ) and 𝐶 > 0 such that for every real 𝑡 with |𝑡| > 3 and every real 𝜎 with

𝜎 ≥ 1 − 𝐴/ log |𝑡|,

the logarithmic derivative of the Riemann zeta function satisfies the uniform bound

∣ 𝜁
′(𝜎 + 𝑖𝑡)

𝜁(𝜎 + 𝑖𝑡) ∣ ≤ 𝐶 log |𝑡|2.

The constants 𝐴, 𝐶 are absolute (independent of 𝜎 and 𝑡) and give a uniform control of 𝜁′/𝜁 in
the stated region.

Proof.
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Chapter 5

Strong PNT

Theorem 621 (Strong PNT). We have

∑
𝑛≤𝑥

Λ(𝑛) = 𝑥 + 𝑂(𝑥 exp(−𝑐(log 𝑥)1/2)).

Proof.
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